7.1. Résultats des mesures de dose ambiante

MESURES DE DÉBIT DE DOSE AMBIANTE EFFECTUÉES À L'AIDE D'UNE CHAMBRE D'IONISATION (CERN 2005 & 2006)

Récapitulatif des mesures de débits de doses au voisinage du CERN en 2005 Mesures OFSP

Mesules Orse		H10* nSv/h	Ecartype	H10 nSv/h	Ecartype
Centre Sportif	21/09/2005	97,2	3,5	92,6	3,5
Douane Bourdigny	21/09/2005	100,9	2,5	96,1	2,5
Entrée A	21/09/2005	90,3	4,6	86,0	4,6
Meyrin	21/09/2005	90,0	2,6	85,7	2,6
PA1 SD 25 11	21/09/2005	88,9	3,6	84,7	3,6
PA2 Saint Genis	21/09/2005	93,6	3,5	89,1	3,5
PA8 Ferney	21/09/2005	95,1	2,5	90,6	2,5
Puit Ti2 Saint Genis	21/09/2005	88,3	2,8	84,1	2,8
PZ33 Crotzet	21/09/2005	97,7	3,5	93,0	3,5
Ti2 Bourdigny PT0	21/09/2005	96,4	3,0	91,8	3,0
PA4	21/09/2005	105,8	3,1	100,8	3,1
Eaux Vives	25/10/2005	90,3	2,9	86,0	2,9
Jussy	25/10/2005	100,0	1,6	95,2	1,6
Vireloup	25/10/2005	92,8	2,7	88,4	2,7
Bossy	25/10/2005	96,6	3,4	92,0	3,4
Mategnin	25/10/2005	90,8	2,8	86,5	2,8
Alberts	25/10/2005	88,8	2,3	84,6	2,3
Franchevaux	25/10/2005	90,9	2,5	86,6	2,5
BAT 169	25/10/2005	89,5	2,6	85,2	2,6
Planck	25/10/2005	90,0	2,4	85,7	2,4
Château d'Eau	25/10/2005	90,0	3,0	85,7	3,0
Malval	25/10/2005	87,0	4,1	82,9	4,1
Verbois	25/10/2005	95,6	2,2	91,0	2,2
Chancy	25/10/2005	95,3	3,6	90,8	3,6
	Moyenne	93,4			
	Ecarttype	4,7			

Mesures LMRE	H*(10)	+/-
PZ33	94.1	3
PA2	98.7	2.5

Mesure le 22/03/2006

Mesures du débit de dose ambiante du 22.et 23.03.2006 effectuées par l'OFSP

CERN Collex		CERN Point 6		CERN Point Golf	
16:37:42	0.1049	11:24:04	0.0986	13:42:32	0.085
16:38:12	0.1039	11:24:34	0.0934	13:43:02	0.0882
16:38:42	0.1007	11:25:04	0.0976	13:43:32	0.086
16:39:12	0.106	11:25:34	0.1007	13:44:02	0.0871
16:39:42	0.1007	11:26:04	0.0955	13:44:32	0.0903
16:40:12	0.1007	11:26:34	0.1039	13:45:02	0.0882
16:40:42	0.1007	11:27:04	0.1028	13:45:32	0.0913
16:41:12	0.1081	11:27:34	0.0997	13:46:02	0.0892
16:41:42	0.1071	11:28:04	0.0986	13:46:32	0.0934
16:42:12	0.1007	11:28:34	0.1049	13:47:02	0.0903
16:42:42	0.0997	11:29:04	0.1018	13:47:32	0.0913
16:43:12	0.0955	11:29:34	0.1028	13:48:02	0.0924
16:43:42	0.0986	11:30:04	0.1071	13:48:32	0.0924
16:44:12	0.1039	11:30:34	0.0945	13:49:02	0.0924
16:44:42	0.1007	11:31:04	0.0986	13:49:32	0.0903
16:45:12	0.1039	11:31:34	0.0976	13:50:02	0.0892
16:45:42	0.1091	11:32:04	0.0976	13:50:32	0.0945
16:46:12	0.1071	11:32:34	0.0955	13:51:02	0.0966
16:46:42	0.1049	11:33:04	0.0976	13:51:32	0.0892
16:47:12	0.1018	11:33:34	0.0976	13:52:02	0.0913
16:47:42	0.1018	11:34:04	0.0997	13:52:32	0.0903
16:48:12	0.106	11:34:34	0.0955	13:53:02	0.0882
16:48:42	0.106	11:35:04	0.1007	13:53:32	0.0871
16:49:12	0.1007	11:35:34	0.1028	13:54:02	0.0829
16:49:42	0.1071	11:36:04	0.1028	13:54:32	0.0892
16:50:12	0.1028	11:36:34	0.0986	13:55:02	0.0924
16:50:42	0.1071	11:37:04	0.0966	13:55:32	0.0903
16:51:12	0.1049	11:37:34	0.1028	13:56:02	0.0892
16:51:42	0.1028	11:38:04	0.1007		
16:52:12	0.1071	11:38:34	0.0955		
16:52:42	0.1039	11:39:04	0.0997		
16:53:12	0.1028	11:39:34	0.1018		
16:53:42	0.1028	11:40:04	0.1007		
16:54:12	0.106	11:40:34	0.1018		
		11:41:04	0.0955		
		11:41:34	0.0997		
		11:42:04	0.1007		
		11:42:34	0.0986		
		11:43:04	0.1007		
Moyenne	103.5		99.5		89.9
Ecart -type	3.1		3.1		2.9

CERN Maisonnex		CERN Booster	
		22.03.2006 14:22	0.0976
23.03.2006 10:30:38	0.1018	22.03.2006 14:22	0.0966
23.03.2006 10:31:08	0.0997	22.03.2006 14:23	0.0955
23.03.2006 10:31:38	0.0955	22.03.2006 14:23	0.0934
23.03.2006 10:32:08	0.1007	22.03.2006 14:24	0.0976
23.03.2006 10:32:38	0.1018	22.03.2006 14:24	0.0955
23.03.2006 10:33:08	0.1007	22.03.2006 14:25	0.0976
23.03.2006 10:33:38	0.0997	22.03.2006 14:25	0.0945
23.03.2006 10:34:08	0.106	22.03.2006 14:26	0.0924
23.03.2006 10:34:38	0.0986	22.03.2006 14:26	0.1018
23.03.2006 10:35:08	0.1028	22.03.2006 14:27	0.0976
23.03.2006 10:35:38	0.1039	22.03.2006 14:27	0.1018
23.03.2006 10:36:08	0.0997	22.03.2006 14:28	0.0986
23.03.2006 10:36:38	0.0913	22.03.2006 14:28	0.0945
23.03.2006 10:37:08	0.1007	22.03.2006 14:29	0.0986
23.03.2006 10:37:38	0.0997	22.03.2006 14:29	0.1018
23.03.2006 10:38:08	0.1007	22.03.2006 14:30	0.1018
23.03.2006 10:38:38	0.1018	22.03.2006 14:30	0.0966
23.03.2006 10:39:08	0.0997	22.03.2006 14:31	0.0976
23.03.2006 10:39:38	0.1039	22.03.2006 14:31	0.0966
23.03.2006 10:40:08	0.0986	22.03.2006 14:32	0.0966
23.03.2006 10:40:38	0.1028	22.03.2006 14:32	0.1007
23.03.2006 10:41:08	0.0997	22.03.2006 14:33	0.0976
23.03.2006 10:41:38	0.0997	22.03.2006 14:33	0.1049
23.03.2006 10:42:08	0.0966	22.03.2006 14:34	0.1028
23.03.2006 10:42:38	0.0986	22.03.2006 14:34	0.1007
23.03.2006 10:43:08	0.1007	22.03.2006 14:35	0.0966
23.03.2006 10:43:38	0.1039	22.03.2006 14:35	0.1028
23.03.2006 10:44:08	0.1028	22.03.2006 14:36	0.0986
23.03.2006 10:44:38	0.0997	22.03.2006 14:36	0.0997
23.03.2006 10:45:08	0.0986	22.03.2006 14:37	0.0997
23.03.2006 10:45:38	0.0945	22.03.2006 14:37	0.0945
23.03.2006 10:46:08	0.0966	22.03.2006 14:38	0.0976
23.03.2006 10:46:38	0.1007	22.03.2006 14:38	0.1018
23.03.2006 10:47:08	0.0997	22.03.2006 14:39	0.0986
23.03.2006 10:47:38	0.0986	22.03.2006 14:39	0.1007
23.03.2006 10:48:08	0.0986	22.03.2006 14:40	0.1028
23.03.2006 10:48:38	0.1028	22.03.2006 14:40	0.0966
23.03.2006 10:49:08	0.0976	22.03.2006 14:41	0.0976
23.03.2006 10:49:38	0.0976	22.03.2006 14:41	0.0976
Moyenne	99.9		98.4
Foort - type	2.0		2.9
Ecart - type	2.8		2.9

Extrait des rapports de l'Institut de Radiophysique Appliquée (IRA) de l'Université de Lausanne concernant le CERN

Dosimétrie environnementale sur les sites du CERN

1. Introduction

L'OFSP est impliqué dans la surveillance de la radioprotection du CERN. Pour améliorer la surveillance de l'environnement et le contrôle des débits de dose aux alentours de ce centre, et afin d'établir l'état de la situation avant la mise en fonction du nouvel accélérateur LHC au CERN (point zéro), l'OFSP a décidé de mettre sur pied un système indépendant de surveillance continue autour de ces institutions basé sur un ensemble de dosimètres passifs suffisamment sensibles pour mesurer les doses environnementales.

2. Matériel et méthode

2.1. Dosimètre d'ambiance de l'IRA

Le dosimètre passif à TLD est constitué d'un récipient de 110 mm de diamètre et 125 mm de hauteur rempli de paraffine au centre duquel un porteur cylindrique en plexiglas contient 3 TLD MCP-600 de type ⁶LiF et 3 TLD MCP-700 de type ⁷LiF (matériau LiF:Mg,Cu,P). Le dosimètre est illustré à la Figure 1.

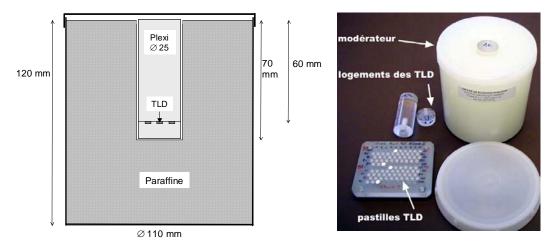


Figure 1. Dosimètres à neutrons TLD

Les détecteurs TLD ⁶LiF sont sensibles aux rayons γ et aux neutrons, tandis que les TLD ⁷LiF ne sont sensibles qu'aux rayons γ. La différence de signal entre les paires ⁶LiF/⁷LiF correspond donc à la dose des neutrons. Les détails concernant les modalités d'utilisation des TLD MCP, l'évaluation du signal, l'étalonnage des dosimètres et le rattachement métrologique ont été donnés dans le rapport de 2004 [1].

2.2. Installation dans l'environnement

Les dosimètres doivent être installés dans l'environnement d'une façon durable et suffisamment sûre pour permettre un suivi dosimétrique sur plusieurs années. A cette fin, le dispositif de mesure décrit plus haut est placé dans un conteneur de protection contre les intempéries et contre le rayonnement solaire, et l'ensemble est fixé directement aux clôtures existantes ou sur un poteau planté dans le sol. La hauteur de mesure est de l'ordre de 1 m à 1.3 m (sauf cas particulier). Le conteneur externe est en polypropylène; son épaisseur entraîne un effet négligeable sur l'étalonnage des dosimètres (tout au plus un léger accroissement de l'épaisseur de modérateur lors de l'accumulation d'eau de pluie sur le couvercle, jusqu'à 8 mm).

3. Sites de mesure

Les endroits de mesure autour du CERN ont été établis dans une concertation entre l'OFSP, le CERN et l'IRA d'après les points critiques attendus pour le LHC et les valeurs actuellement relevées par la dosimétrie d'ambiance du CERN.

Tableau 1. Emplacements de mesure autour du CERN. Numéros de l'IRA et localisation du dosimètre. Les noms des sites du CERN et les coordonnées sont donnés pour information (PA = puits d'accès, TI = tunnel de transfert).

No IRA	Site	Coordonnées	Localisation	Dosimètre actuel
1	LHC PA3	490038 / 126092	Mât de projecteur	
2	LHC PA5	495113 / 129675	Poteau clôture	CERN PMS 952
3	LHC PA6	497684 / 127837	Poteau clôture	
4	LHC PA7	498276 / 124605	Poteau IRA	
5	LHC PA8	496462 / 121961	Poteau IRA	
6	LHC PA1	493307 / 121486	Poteau IRA	
7	LHC TI2	491678 / 121715	Poteau clôture	
8	Prévessin	493678 / 124407	Station du CERN	CERN PMS 816
9	Prévessin	494197 / 124888	Station du CERN	CERN PMS 823
10	Meyrin	492708 / 121078	Station du CERN	CERN PMS 116
11	Meyrin	492744 / 121180	Station du CERN	CERN PMS 128
12	Meyrin	493319 / 120661	Station du CERN	OFSP 5, collecteur d'air
13	Pt. référence	493857 / 121638	Petit chalet	OFSP 7

Notons qu'aux points 10 et 13, il y a déjà des dosimètres neutrons de l'IRA à TLD-600/700 ordinaires. Le point 4 est accessible au public, le dosimètre est exposé au vol et déprédations. Le point 5 aussi, mais dans une moindre mesure car il se trouve devant l'entrée d'un site du CERN. Les autres dosimètres sont tous situés à l'intérieur des sites du CERN.

Ces points de mesure sont localisés dans la Figure 2 et illustrés par des photos.

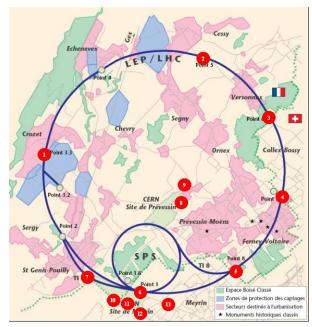
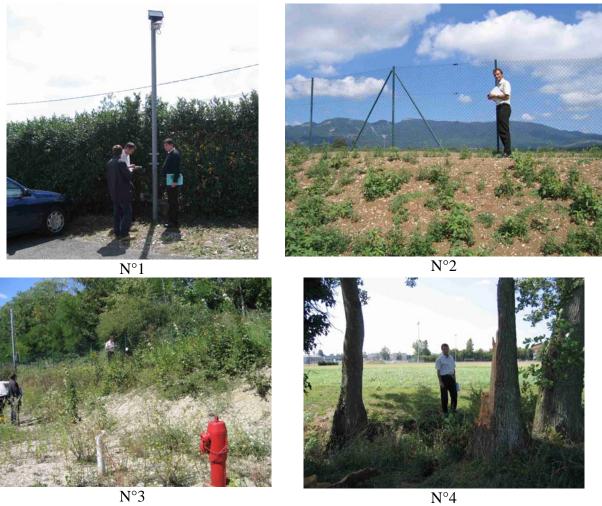



Figure 2. Carte des emplacements de mesures au CERN

N°4

Pas de photos des points 8 et 9 : stations identiques à celles des points 10, 11 et 12.

N°13 (Référence)

4. Résultats des mesures pour les neutrons et les gammas

4.1. 4^{ème} trimestre 2005 (25.10.05 au 20.12.05), soit 56 jours

Les valeurs mesurées sont données dans le Tableau 2 en débit moyen d'équivalent de dose sur la période considérée. Pour comparaison, les résultats des 2 dosimètres exposés dans le bâtiment de l'IRA à Lausanne sont présentés au bas du tableau. Le dosimètre de l'emplacement no 9 n'a pas pu être relevé, celui prévu en échange ayant été endommagé pendant le transport.

Tableau 2. Débit d'équivalent de dose moyen relevé dans les sites de mesure au CERN

No IRA	Site	Localisation	H*(10)	U_{95}	H*(10)	U_{95}
			neutrons (μSv/h)	(µSv/h)	gamma (μSv/h)	(µSv/h)
						-
1	LHC PA3	Mât de projecteur	0.010	0.009	0.121	0.010
2	LHC PA5	Poteau clôture	0.019	0.019	0.126	0.024
3	LHC PA6	Poteau clôture	0.007	0.007	0.142	0.008
4	LHC PA7	Poteau IRA	0.007	0.007	0.135	0.009
5	LHC PA8	Poteau IRA	0.013	0.013	0.131	0.009
6	LHC PA1	Poteau IRA	0.016	0.016	0.136	0.023
7	LHC TI2	Poteau clôture	0.019	0.008	0.132	0.008
8	Prévessin	Station du CERN	0.017	0.009	0.131	0.009
9	Prévessin	Station du CERN	-	-	-	-
10	Meyrin	Station du CERN	0.016	0.010	0.119	0.010
11	Meyrin	Station du CERN	0.013	0.013	0.128	0.020
12	Meyrin	Station du CERN	0.013	0.012	0.127	0.012
13	Pt. référence	Petit chalet	0.009	0.009	0.127	0.012
1	-	IRA local GP 307	0.015	0.015	0.113	0.023
2	-	IRA local GP 307	< 0.005	-	0.119	0.009

4.2. 1^{er} trimestre 2006 (20.12.05 au 28.03.06), soit 98 jours.

Tableau 3. Débit d'équivalent de dose moyen relevé dans les sites de mesure au CERN

No IRA	Site	Localisation	H*(10)	U_{95}	$\dot{H}^{*}(10)$	U_{95}
			neutrons	(0 /1)	gamma	(C (1)
			(µSv/h)	(µSv/h)	(µSv/h)	(µSv/h)
1	LHC PA3	Mât de projecteur	0.010	0.007	0.105	0.006
2	LHC PA5	Poteau clôture	< 0.006	-	0.119	0.008
3	LHC PA6	Poteau clôture	< 0.006	-	0.132	0.008
4	LHC PA7	Poteau IRA	< 0.006	-	0.113	0.006
5	LHC PA8	Poteau IRA	< 0.006	-	0.124	0.013
6	LHC PA1	Poteau IRA	< 0.006	-	0.127	0.023
7	LHC TI2	Poteau clôture	< 0.006	-	0.121	0.009
8	Prévessin	Station du CERN	0.009	0.007	0.114	0.009
9	Prévessin	Station du CERN	0.009	0.009	0.103	0.008
10	Meyrin	Station du CERN	0.005	0.004	0.116	0.007
11	Meyrin	Station du CERN	0.007	0.007	0.113	0.008
12	Meyrin	Station du CERN	0.007	0.007	0.114	0.008
13	Pt. référence	Petit chalet	< 0.006	-	0.117	0.007
1	-	IRA local GP 307	< 0.006	-	0.104	0.008
2	-	IRA local GP 307	< 0.006	-	0.103	0.008

4.3. $2^{\text{ème}}$ trimestre 2006 (28.03.06 au 27.06.06), soit 91 jours.

Tableau 4. Débit d'équivalent de dose moyen relevé dans les sites de mesure au CERN

No IRA	Site	Localisation	H*(10)	${\rm U}_{95}$	Н̈*(10)	U_{95}
			neutrons $(\mu Sv/h)$	$(\mu Sv/h)$	gamma (μSv/h)	$(\mu Sv/h)$
1	LHC PA3	Mât de projecteur	0.011	0.009	0.088	0.007
2	LHC PA5	Poteau clôture	0.011	0.010	0.097	0.010
3	LHC PA6	Poteau clôture	< 0.006	-	0.107	0.019
4	LHC PA7	Poteau IRA	< 0.006	-	0.103	0.007
5	LHC PA8	Poteau IRA	< 0.006	-	0.110	0.011
6	LHC PA1	Poteau IRA	< 0.006	-	0.113	0.009
7	LHC TI2	Poteau clôture	< 0.006	-	0.107	0.006
8	Prévessin	Station du CERN	< 0.006	0.007	0.106	0.006
9	Prévessin	Station du CERN	< 0.006	0.009	0.106	0.007
10	Meyrin	Station du CERN	0.010	0.008	0.109	0.006

11	Meyrin	Station du CERN	0.019	0.014	0.107	0.014
12	Meyrin	Station du CERN	< 0.006	-	0.110	0.010
13	Pt. référence	Petit chalet	< 0.006	-	0.109	0.006
1	-	IRA local GP 307	0.012	0.009	0.093	0.007
2	_	IRA local GP 307	< 0.006	-	0.095	0.014

4.4. 3^{ème} trimestre 2006 (27.06.06 au 10.10.06), soit 105 jours

Les valeurs mesurées sont données dans le Tableau 5 en débit d'équivalent de dose ambiant moyen sur la période considérée. Pour comparaison, les résultats des 2 dosimètres exposés dans le bâtiment de l'IRA à Lausanne sont présentés au bas du tableau.

Tableau 5. Débit d'équivalent de dose moyen relevé dans les sites de mesure au CERN

No IRA	Site	Localisation	Н [*] (10)	U_{95}	Н [*] (10)	${\rm U}_{95}$
			neutrons (μSv/h)	$(\mu Sv/h)$	gamma (μSv/h)	$(\mu Sv/h)$
1	LHC PA3	Mât de projecteur	0.012	0.009	0.103	0.009
2	LHC PA5	Poteau clôture	< 0.013	-	0.108	0.014
3	LHC PA6	Poteau clôture	< 0.006	-	0.124	0.012
4	LHC PA7	Poteau IRA	< 0.006	-	0.108	0.006
5	LHC PA8	Poteau IRA	< 0.013	-	0.113	0.011
6	LHC PA1	Poteau IRA	< 0.013	-	0.126	0.016
7	LHC TI2	Poteau clôture	< 0.006	-	0.110	0.014
8	Prévessin	Station du CERN	< 0.006	-	0.510	0.046
9	Prévessin	Station du CERN	0.034	0.020	0.118	0.019
10	Meyrin	Station du CERN	0.061	0.014	0.112	0.008
11	Meyrin	Station du CERN	0.131	0.020	0.113	0.009
12	Meyrin	Station du CERN	< 0.006	-	0.104	0.012
13	Pt. référence	Petit chalet	< 0.006		0.114	0.010
1	-	IRA local GP 307	< 0.006	-	0.113	0.016
2	-	IRA local GP 307	< 0.006	-	0.114	0.016

Les débits d'équivalent de dose ambiant moyens relevés dans les emplacements no 1-7 et 12-13 autour du CERN correspondent à ceux de l'irradiation naturelle (0.005 à 0.010 μ Sv/h pour les neutrons et environ 0.1 μ Sv/h pour les gamma).

Aux points 9, 10 et 11, la dose des neutrons est plus élevée que celle de l'irradiation naturelle (avec une assez grande incertitude au point no 9) ; la dose des photons correspond quant à elle à l'irradiation naturelle.

Le point no 8 présente une dose des photons environ 5 fois plus élevée que ce qui a été enregistré dans les 2 trimestres précédents, tandis que la dose des neutrons est très faible

(inférieure à la limite de détection). Aucun problème de mesure n'est apparu avec ce dosimètre, qui n'avait pu être mis en place par un collaborateur du CERN qu'une semaine après les autres en raison d'un accès impossible lors de l'échange le 27.6.06. Cette dose plus élevée qu'auparavant est provoquée par la remise en service de l'expérience COMPASS (*COmmon Muon Proton Apparatus for Structure and Spectroscopy*) sur le synchrotron à protons à la fin juillet. Le point 8 se trouve au-delà du *beam stopper* de ce faisceau. L'expérience s'étendra jusqu'au 20.11.06.

Les doses des photons sont en moyenne plus élevées qu'au 2^e trimestre (+6%).

5. Conclusions

Les résultats donnés dans ce rapport montrent que les niveaux de dose sont proches de la radiation naturelle ambiante sur le site du CERN.

Pour tous les emplacements au CERN, l'équivalent de dose relevé durant le 4^{ème} trimestre 2005 n'est pas significativement différent du niveau de la radiation naturelle enregistré dans les sites de référence de bruit de fond.

Les résultats du 1^{er} trimestre 2006 montrent aussi des niveaux de dose proches de la radiation ambiante sur le site du CERN. Notons qu'une correction a été introduite dans l'évaluation des résultats pour les gammas par rapport au dernier trimestre 2005. Le signal enregistré entre la préparation du TLD et la mise en place sur le site, de même qu'entre le retrait et la lecture du TLD, est maintenant déduit. Cette correction donne lieu à des valeurs correspondant mieux aux niveaux attendus dans l'environnement qu'auparavant.

Les résultats du 2^e trimestre 2006 montrent que les niveaux de dose sont proches de la radiation naturelle ambiante sur le site du CERN, comme c'était le cas pour le 1^{er} trimestre.

Les résultats du 3^e trimestre 2006 indiquent que les niveaux de dose sont proches de la radiation naturelle ambiante sur le site du CERN à l'exception de 3 points. Dans les points 10 et 11 du site de Meyrin, les doses de neutrons sont significativement plus élevées que le niveau naturel. Et au point 8 sur le site de Prévessin, une dose de photons environ 5 fois plus élevées que celles des 2 premiers trimestres 2006 est relevée. Cette augmentation est imputable à la remise en route de l'expérience COMPASS dans le nord-est du site.

6. Références

- [1] Rapport *Dosimètre d'ambiance à TLD de haute sensibilité MCP-600/700*, Thierry Buchillier, François Bochud, Jean-François Valley, 24 décembre 2004.
- [2] Rapport *Dosimétrie environnementale sur les sites du CERN et du PSI*, Thierry Buchillier, François Bochud, 23 décembre 2005.
- [3] Rapport *Dosimétrie environnementale sur les sites du CERN et du PSI*, Thierry Buchillier, François Bochud, 23 décembre 2006.

7.2. Résultats des mesures dans le milieu atmosphérique

Extrait de la base de données des collecteurs de haut débit de l'OFSP

Semaine	Volume	7Be	22Na	40K	210Pb	137Cs	131I	24Na
2006	[m3]	[microBq/m3]						
50	89'801	2.34E+03		6.46E+00	3.22E+02	4.63E-01		
49								
48	94'671	3.22E+03		6.91E+00	7.93E+02	4.49E-01		
47	83'913	3.87E+03			5.54E+02	2.95E-01		
46	94'869	3.84E+03		1.04E+01	5.47E+02	4.30E-01	3.57E-01	2.05E+01
45	102'127	3.52E+03	3.66E-01	7.58E+00	5.42E+02	5.64E-01		
44	72'519	4.49E+03	3.60E-01	1.44E+01	7.40E+02	3.78E-01		
43	93'406	3.75E+03	2.61E-01	5.80E+00	6.81E+02	2.86E-01		7.51E+00
42	92'633	5.00E+03	4.77E-01	1.62E+01	1.62E+03	4.12E-01		
41	107'107	4.09E+03	3.35E-01	7.63E+00	4.39E+02	2.24E-01		1.65E+01
40	88'821	3.44E+03	4.13E-01	6.30E+00	6.95E+02	1.77E-01		
39	93'885	4.42E+03		8.33E+00	1.04E+03	3.32E-01		1.22E+01
38	97'162	3.21E+03	1.83E-01	8.02E+00	7.71E+02	2.00E-01		
37	101'753	4.38E+03	7.79E-01		7.23E+02	8.06E-01		9.42E+00
36	101'753	3.44E+03	4.05E-01	7.45E + 00	4.38E+02			
35	101'273	3.80E+03	3.62E-01		3.00E+02			
34	109'403	3.79E+03	4.62E-01		2.91E+02			
33	93'751	2.98E+03			2.44E+02			
32	110'928	3.09E+03	3.37E-01	2.16E+00	2.80E+02	1.84E-01		
31	97'570	5.66E+03	6.67E-01	7.90E+00	7.29E+02			
30	107'743	6.84E+03	7.38E-01		9.54E+02	5.46E-01		
29	103'772	6.77E+03	7.79E-01	1.53E+01	7.23E+02	2.91E-01		1.01E+01
28	102'917	4.72E+03	4.60E-01		5.51E+02			
27	100'760	6.40E+03	8.76E-01	1.30E+01	7.24E+02	3.67E-01		
26	96'208	4.96E+03	7.03E-01	1.93E+01	6.29E+02	5.85E-01		

25	93'976	5.41E+03	3.75E-01	2.75E+01	6.28E+02	1.15E+00	
24	109'060	5.79E+03	7.41E-01	7.84E+00	4.86E+02	3.02E-01	
23	115'235	4.03E+03	3.80E-01	9.32E+00	2.41E+02		
22	113'993	3.21E+03	4.70E-01	4.58E+00	2.27E+02	2.02E-01	1.67E-01
21	108'877	5.16E+03	6.65E-01	1.02E+01	3.30E+02	4.69E-01	
20	109'088	3.63E+03	4.24E-01		3.58E+02		
19	104'498	3.95E+03	5.03E-01	7.92E+00	5.05E+02	2.87E-01	
18	113'835	4.54E+03	6.55E-01	1.31E+01	4.21E+02	7.25E-01	
17	110'994	5.01E+03		1.05E+01	5.77E+02		
16	100'129	3.74E + 03	5.63E-01	4.45E+00	2.80E+02	1.50E-01	
15	124'658	2.72E+03	2.77E-01	7.67E+00	2.84E+02	5.59E-01	
14	115'568	2.98E+03	2.71E-01	3.64E+00	1.41E+02		
13							
12							
11	111'272	2.45E + 03			4.25E+02	1.25E+00	
10							
9							
8	103'738	1.93E-03			1.75E-04	2.43E-07	
7	81'149	2.66E+03		7.10E+00	5.60E+02	7.36E-01	
6							
5	0.410.4.4	2.505.02		4.275.00	4.255.02	4.075.01	
4	94'044	2.58E+03	4.055.04	4.36E+00	4.35E+02	4.87E-01	
3	68'166	5.94E+03	4.25E-01	1.79E+01	2.02E+03	1.09E+00	
2	80'407	2.42E+03		1.24E+01	1.49E+03	1.18E+00	
1	107'805	1.34E+03			3.50E+02	5.29E-01	
2005	001074	0.555.00	0.005.04	/ O/F 00	0.005.00	0.505.04	
52	98'971	2.55E+03	2.99E-01	6.06E+00	3.83E+02	3.53E-01	
51	113'938	2.40E+03	1.53E-01	5.03E+00	5.46E+02	1.17E+00	
50	99'846	1.25E+03		4.50E+00	4.55E+02	3.48E-01	
49	105'765	1.83E+03		- 0	5.25E+02	3.91E-01	
48	112'422	2.37E+03		5.35E+00	3.18E+02	2.76E-01	
47	73'772	3.31E+03		1.70E+01	1.51E+03	8.08E-01	

46 45	90'363	2.87E+03		4.91E+00	5.81E+02	3.39E-01		
44	102'472	1.85E+03		8.02E+00	5.51E+02	1.87E-01		
43	103'962	3.91E+03	2.70E-01	7.67E+00	1.70E+03	5.80E-01		
42	103'148	2.32E+03	2.71E-01	1.07E+01	1.13E+03	3.36E-01	2.37E+00	
41	110'336	2.20E+03		7.20E+00	3.19E+02			
40	106'549	4.40E+03		9.41E+00	1.43E+03	4.39E-01		1.64E+01
39	114'157	2.50E+03	2.10E-01	6.03E+00	5.06E+02	3.92E-01		9.31E+00
38	105'160	2.73E+03	3.72E-01	6.18E+00	4.93E+02			
37	84'347	5.44E+03	4.66E-01	2.27E+01	1.78E+03	3.06E-01		
36	104'688	4.87E+03	4.42E-01	9.09E+00	6.46E+02			
35	107'743	2.38E+03		6.11E+00	4.83E+02			
34	106'851	3.06E+03	4.02E-01	1.25E+01	3.50E+02	1.88E-01		5.16E+00
33	110'527	3.36E+03	3.83E-01	4.51E+00	3.20E+02		5.14E-01	
32	60'293	5.15E+03	5.14E-01	2.24E+01	8.43E+02	4.14E-01		
31	111'800	4.19E+03	4.47E-01	1.11E+01	5.78E+02			
30	75'770	7.09E+03	1.03E+00	2.18E+01	9.84E+02	4.94E-01		
29	130'024	4.26E+03	4.54E-01	8.34E+00	3.50E+02	3.23E-01	3.74E-01	
28	104'865	2.88E+03	4.77E-01	1.00E+01	2.92E+02			
27	103'669	5.37E+03	4.91E-01	1.30E+01	9.84E+02	3.40E-01		
26	107'600	4.37E+03	4.90E-01	1.25E+01	4.88E+02	2.31E-01		
25	110'456	5.52E+03	6.64E-01	9.20E+00	3.80E+02	3.51E-01		
24	109'566	4.34E+03	6.07E-01	7.10E+00	3.07E+02	1.88E-01		
23	108'338	4.86E+03	4.79E-01	9.28E+00	5.82E+02	3.54E-01		
22	108'842	3.36E+03	4.35E-01	6.06E+00	4.04E+02	2.32E-01		
21	110'643	3.45E+03	5.44E-01	6.71E+00	3.70E+02	2.13E-01		
20	117'456	3.61E+03	6.02E-01	7.53E+00	2.97E+02			
19	111'494	6.50E+03	4.67E-01	1.10E+01	6.51E+02	1.72E-01		
18	114'712	2.70E+03	3.59E-01		3.58E+02			
17	111'150	1.40E+03	1.38E-01	5.51E+00	2.80E+02	2.73E-01		
16								
15								

14							
13							
12	123'854	3.72E+03	4.06E-01	6.36E+00	3.16E+02	2.88E-01	
11	108'771	3.70E+03	5.48E-01	9.31E+00	7.09E+02	3.19E-01	
10	114'952	1.70E+03		8.96E+00	1.13E+03	6.44E-01	
9	124'354	8.05E+02		6.65E+00	5.86E+02	5.36E-01	
8	90'496	2.67E+03		9.52E+00	8.39E+02	3.18E-01	
7	112'662	2.53E+03		7.78E+00	7.85E+02	7.35E-01	
6	113'547	1.85E+03		1.03E+01	7.20E+02	1.06E+00	
5	101'840	1.86E+03			1.86E+02	7.69E-01	
4	80'356	3.71E+03	5.45E-01	1.23E+01	1.20E+03	7.11E-01	
3	98'845	3.38E+03		1.35E+01	7.68E+02		
2	125'294	1.72E+03		6.62E+00	4.44E+02	3.32E-01	9.43E+00
1							

7.3. Résultats des mesures dans le milieu aquatique

Institut F.-A. Forel

LHC Point 0 – Etat initial

« Campagne de septembre 2005 » « Campagne mars-avril 2006 »

Préparé par

J.-L. Loizeau

Institut F.-A. Forel Université de Genève

pour

l'Office fédéral de la santé publique (OFSP), Berne

Juillet 2006

Institut F.-A. Forel, Université de Genève, 10 route de Suisse, 1290 Versoix - Jean-Luc.Loizeau@terre.unige.ch

1. Mandat

Dans le cadre de l'étude de l'impact futur du LHC, en cours de construction par le CERN, l'Institut F.-A. Forel de l'Université de Genève, a reçu le mandat de l'OFSP (mandat 05.001652) d'effectuer le prélèvement, le traitement et l'analyse par spectrométrie gamma d'échantillons de sédiment et de bryophytes provenant de 8 sites correspondant à des points de rejet d'eau de la future installation. Ce rapport expose les résultats de ces analyses en rappelant les données obtenues en septembre 2005 et en présentant les nouveaux résultats de la campagne du printemps 2006.

2. Méthodes

Les eaux de surfaces situées aux futurs points de rejet potentiels du LHC sont analysées par l'intermédiaire de deux types d'échantillonnage intégrant les contaminations potentiels du milieu : les plantes aquatiques (généralement bryophytes) et les sédiments.

La localisation des sites d'échantillonnages, le type d'échantillon, les dates de prélèvements des bryophytes et les périodes d'exposition des pièges à sédiment sont présentés dans le tableau 1. En annexe se trouvent les extraits de carte au 1:25'000 situant les différents points de prélèvement

Sur chaque site, des bryophytes (ou à défaut des algues) ont été prélevées, lavées minutieusement pour éliminer tout sédiment attaché, séchées à l'étuve à 60°C. Elles ont été ensuite hachées manuellement avant d'être mises en tubes de verre pour l'analyse spectroscopique des rayons gamma. Il n'y a pas d'échantillon de plantes aquatiques pour les points PA3 et PA8 (septembre 2005) et pour le point PA7 (printemps 2006), dû à l'absence de végétation de type bryophytes ou algues sur ces sites. Le point PA3 est constitué de deux sites de prélèvements (en 2005), en amont et en aval d'une zone marécageuse (cf. carte en annexe). En 2006 seul le point amont a été échantillonné (PA3b).

Les sédiments ont été récupérés à l'aide de pièges à particules consistant en des tubes de PVC de 20 à 25 cm de longueur pour 5.8 cm de diamètre. Tous les échantillons de sédiments ont été tamisés à 63µm, séché à l'air à 60°C et mis en tubes de verre.

Un échantillon d'eau a été prélevé à la fontaine de la ferme Grunder, au lieu dit « Les Arbères », sur la commune de Meyrin. L'échantillon a été acidifiés (HNO₃ 1% concentration finale) pour éviter toute adsorption d'éléments à la surface des récipients. Il a été est évaporé à sec (Rotavapor) et le résidu repris dans de l'acide nitrique 1 N pour obtenir un volume final de 40 mL.

Les activités des rayonnements gamma ont été déterminées pour les bryophytes et les sédiments dans un détecteur puits HPGe (modèle Ortec GWL-110230). Le temps de mesure pour chaque échantillon est de 2 à 3 jours. Les limites de détection dans les sédiments sont de l'ordre de 8, 1, et 30 Bq kg⁻¹ pour les isotopes ⁷Be, ¹³⁷Cs, et ⁴⁰K respectivement. Ces valeurs sont au maximum 7 fois plus élevées pour les échantillons de plantes aquatiques, leur densité étant plus faible que celle des sédiments et partant, la masse analysée moindre.

L'échantillon d'eau a été mesuré dans un détecteur plan HPGe (modèle Ortec GMX-50220-S) avec fenêtre de Be. Les limites de détection sont de 2*10⁻³, 2*10⁻², 4*10⁻³ Bq/L pour les isotopes ¹³⁷Cs, ⁷Be, ⁶⁵Zn, respectivement.

Tableau 1 : Liste des sites et types d'échantillon (voir en annexe les cartes des sites).

Sites	Coordonnées	Type de v	Type de végétation		élèvement des , sédiments et	Période d'exposition des pièges à sédiment		
				e	eau			
		2005	2006	2005	2006	2005	2006	
PA1	492607 / 119 369	Bryophytes	Bryophytes	09.09.05	22.03.06	30.08.05-07.10.05	16.03.06-13.04.06	
PA2	490384 / 122 838	Bryophytes	Bryophytes	09.09.05	22.03.06	09.09.05-07.10.05	28.04.06-26.05.06	
PA3	491084 / 124383	-	-	-	-	09.09.05-07.10.05	-	
PA3b	490582 / 124859	Bryophytes	Bryophytes	09.09.05	22.03.06	09.09.05-07.10.05	22.03.06-28.04.06	
PA4	492915 / 129207	Bryophytes	Bryophytes	09.09.05	28.04.06	09.09.05-07.10.05	22.03.06-28.04.06	
PA5	496219 / 129022	Algues	Bryophytes	09.09.05	22.03.06	09.09.05-07.10.05	22.03.06-28.04.06	
PA6	498040 / 127857	Bryophytes	Bryophytes	09.09.05	22.03.06	09.09.05-07.10.05	22.03.06-28.04.06	
PA7	497991 / 124692	Bryophytes	-	09.09.05	-	09.09.05-07.10.05	22.03.06-28.04.06	
PA8	496980 / 123018	-	Algues	-	28.04.06	09.09.05-07.10.05	22.03.06-28.04.06	
Dry pond (PA5)	495315 / 129065		-	09.09.05	28.04.06	-	-	
Pisciculture Richelien	499631 / 126403	-	-	07.10.05	28.04.06	-	-	
Eau Fontaine Grunder	493910 / 121734	-	-	-	08.02.06	-	-	

L'étalonnage en efficacité des détecteurs a été obtenu par mesure de solutions de référence dans une géométrie identique à celle utilisée pour les mesures des échantillons. Pour les bryophytes et les sédiments, une correction d'auto-absorption a été appliquée aux mesures de 7 Be et de 137 Cs pour tenir compte des variations de densité de la matrice (matière organique, particules inorganiques, Dulinsky et Dominik, 1989). Les spectres ont été analysés à l'aide du logiciel GammaVision 5-1. Les activités sont corrigées pour la décroissance radioactive au temps de l'échantillonnage (pour le 7 Be et 137 Cs). Les résultats sont exprimés en Bq kg $^{-1}$ poids sec et les incertitudes de mesure données correspondent à 1 σ .

3. Résultats

Les activités mesurées dans les échantillons de plantes aquatiques (bryophytes et algues), de sédiments et d'eau sont présentées dans le tableau 2 et sur les figures 1 (bryophytes) et 2 (sédiments). Les bryophytes échantillonnées sont de l'espèce *Rhynchostegium riparioides* sur tous les sites (aimablement déterminées par L. Brugisser, Conservatoire et Jardin Botaniques de Genève). Les seuls radionucléides détectables dans les échantillons prélevés sont le ⁷Be, ¹³⁷Cs et ⁴⁰K, mis à part les isotopes filles des séries de l'uranium et du thorium. Les autres radionucléides, qui ont été parfois décelés dans les sédiments et les bryophytes aux abords du CERN (Höfert et al. 1998, Loizeau et al. 2000), comme le ⁵⁷Co, ⁶⁰Co ou ⁵⁴Mn n'ont pas été détectés.

Pour les bryophytes, les résultats montrent des concentrations en ⁷Be variant entre 103 et 734 Bq/kg et entre 241 et 430 Bq/kg pour ⁴⁰K en 2005. Pour la campagne de 2006, les concentrations en ⁷Be varient entre 214 et 1224 Bq/kg et entre 121 et 1224 Bq/kg pour ⁴⁰K. Aucune activité de ¹³⁷Cs n'est détectée dans les plantes en 2005, alors qu'en 2006 deux échantillons (PA6 et PA8) montrent une faible activité (3.1 et 4.7 Bq/kg, respectivement).

Pour les sédiments, en 2005, les gammes d'activité sont de 41 à 818 Bq/kg (⁷Be), de 241 à 722 Bq/kg (⁴⁰K) et de 3.8 à 17.6 Bq/kg (¹³⁷Cs). En 2006, les valeurs varient entre 54 et 1734 Bq/kg (⁷Be), entre 270 et 600 Bq/kg (⁴⁰K), et entre 1.3 et 21.8 Bq/kg (¹³⁷Cs). La faible valeur de ⁷Be sur le site de la pisciculture et dans le pond (PA5) est due à un effet de dilution, l'échantillonnage des sédiments de fond prenant en compte une certaine quantité de particules déposées depuis relativement longtemps et qui ne contiennent plus de ⁷Be.

Pour l'eau (Fontaine Grunder), les activités des différents radionucléides sont toutes en dessous des limites de détections (cf § 2).

4. Discussion

4.1. Comparaison des deux campagnes de mesure

Bryophytes

La comparaison des résultats des deux campagnes montre pour le ⁷Be des valeurs en 2006 couvrent une plus grande étendue, avec un maximum de 1224 Bq/kg sur le point PA2 et un minimum de 214 Bq/kg au point PA6, sans présenter de tendance marquée entre les deux campagnes. Une remarque identique est valable pour le ⁴⁰K, avec des activités de 2006 plus élevées pour la majorité des sites, spécialement au point PA8 (pas d'échantillon en 2005). Il est toutefois délicat de comparer ce dernier point avec les autres sites, car cet échantillon est constitué d'algue et non de bryophyte.

Sédiments

Le ⁷Be est généralement moins présent en 2006 qu'en 2005, sauf au point PA2 qui présente l'activité la plus forte de tous les échantillons. La tendance générale peut s'expliquer par la différence de période d'échantillonnage, car l'apport atmosphérique en ⁷Be est plus fort en été que durant le reste de l'année (Caillet et al. 2001). La campagne 2005 ayant eu lieu en septembre, les activités observées sont plus élevées que lors de la

campagne du printemps 2006. Le site PA2 a été échantillonné en 2006 un mois plus tard que les autres sites de la même campagne (perte du premier piège), ce qui pourrait expliquer la grande différence d'activité par rapport aux autres sites.

Les activités de ¹³⁷Cs sont généralement comparables entre les deux campagnes pour chaque site, tout comme le ⁴⁰K qui présente des activités relativement constantes, sans tendance due à la période d'échantillonnage.

Tableau 2 : Activités spécifiques (poids sec) de trois radionucléides dans les échantillons de plantes aquatiques, sédiments et eau.

Sites et nature de	В	e-7	K-	-40	Cs-137		
l'échantillon	(Bq	/ kg)	(Bq	/ kg)	(Bq	/ kg)	
	2005	2006	2005	2006	2005	2006	
PA1 bryophytes	326 ± 51	496 ± 84	407 ± 44	754 ± 74	-	-	
sédiments	818 ± 108	427 ± 57	400 ± 15	429 ± 12	17.6 ± 3.4	8.3 ± 1.8	
PA2 bryophytes	727 ± 97	1224 ±	241 ± 41	484 ± 67	-	-	
sédiments	858 ± 124	173	363 ± 46	319 ± 19	-	8.8 ± 1.8	
		$1734 \pm$					
		239					
PA3 bryophytes	-		-		-		
sédiments	64 ± 12		430 ± 17		3.6 ± 0.8		
PA3b bryophytes	103 ± 31	229 ± 50	333 ± 47	424 ± 51	-	-	
sédiments	315 ± 42	54 ± 20	274 ± 14	464 ± 20	3.8 ± 0.8	1.3 ± 0.5	
PA4 bryophytes	343 ± 52	327 ± 54	314 ± 42	243 ± 51	-	-	
sédiments	295 ± 43	341 ± 46	344 ± 20	381 ± 20	11.5 ± 1.5	10.5 ± 2.2	
PA5 algues	165 ± 30	494 ± 73	< 100	121 ± 15	-	-	
sédiments	587 ± 80	209 ± 36	364 ± 19	477 ± 22	8.9 ± 1.3	8.5 ± 2.3	
PA6 bryophytes	648 ± 89	214 ± 36	410 ± 52	620 ± 58	-	3.1 ± 0.8	
sédiments	221 ± 31	106 ± 25	476 ± 5	243 ± 9	8.8 ± 2.8	2.5 ± 1.3	
PA7 bryophytes	734 ± 122	-	305 ± 94	-	-	-	
sédiments	362 ± 51	325 ± 43	380 ± 18	507 ± 110	$16.2 \pm$	21.8 ± 4.2	
					2.4		
PA8bryo(05)/alg. (06)		414 ± 63		1224 ± 54		4.7 ± 1.9	
sédiments	705 ± 96	177 ± 36	427 ± 20	270 ± 17	6.7 ± 1.1	3.0 ± 0.9	
Dry Pond (PA5) séd.	-	117 ± 18	722 ± 20	600 ± 22	-	2.3 ± 1.0	
Pisciculture sédiment	41 ± 9	98 ± 15	241 ± 11	259 ± 16	9.3 ± 2.0	10.2 ± 2.0	
Eau fontaine Grunder							

BRYOPHYTES / ALGUES

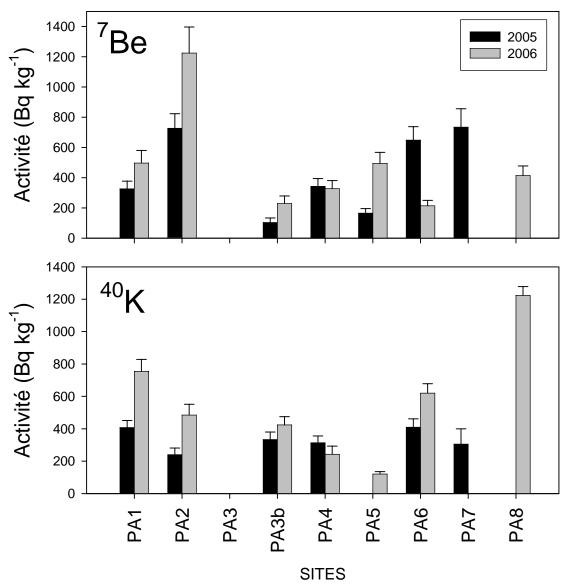


Figure 1 : Activités spécifiques de $^7\mathrm{Be}$ et $^{40}\mathrm{K}$ dans les plantes aquatiques des futurs sites de rejet d'eau du LHC.

SEDIMENTS

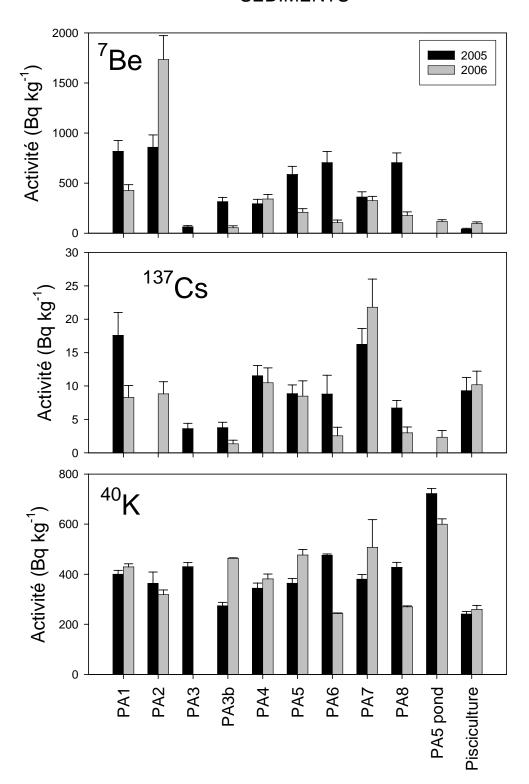


Figure 2 : Activités spécifiques de $^7\mathrm{Be}$, $^{137}\mathrm{Cs}$ et $^{40}\mathrm{K}$ dans les sédiments des futurs sites de rejet d'eau du LHC.

4.2 Comparaison avec d'autres écosystèmes aquatiques

Le tableau 3 présente quelques mesures effectuées dans des bryophytes prélevées autour du CERN en 1998 ainsi que dans des rivières suisses en 2003. On observe des valeurs très semblables à celles rapportées dans la présente étude pour 2005. Par contre en 2006, deux échantillons présentent des activités supérieures aux maximums des deux études présentées, avec un facteur 1.4 pour le ⁷Be et 2 pour le ⁴⁰K. Cependant pour ce dernier radioélément, la mesure n'a pas été effectuée sur des bryophytes, la comparaison doit être considérée avec circonspection.

Tableau 3 : Activité de trois radionucléides dans des bryophytes prélevés dans eaux de surface aux alentours du CERN et dans des rivières suisses.

Lieu	Date	Be-7	K-40	Cs-137
		(Bq/kg)	(Bq/kg)	(Bq/kg)
Hagneck ¹	2004	400 ± 100	600 ± 100	< 4
Klingnauer See ¹	2004	500 ± 100	400 ± 100	10 ± 2
Aval de Leibstadt ¹	2004	200 ± 100	400 ± 100	12 ± 4
Nant d'Avril ²	1998	803	604	12.3
Le Lion ²	1998	656	289	29.3
La Versoix ²	1998	271	306	19.2
L'Allondon ²	1998	896	237	3.9
Cette étude, val. max.	2006	1224±173	1224±54	4.7±1.9

¹ Beer et al. 2005

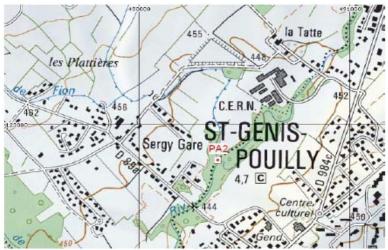
Concernant les sédiments, les valeurs mesurées sont comparables à celles observées depuis 7 ans dans les sédiments du Nant d'Avril, aussi bien pour le ⁷Be que pour le ¹³⁷Cs. Toutefois l'activité de 1734 Bq/kg de ⁷Be mesurée en 2006 au point PA2 est de 38% plus élevée que l'activité maximum mesurée lors de la surveillance du Nant d'Avril (Loizeau et al. 2003).

² Höfert et al. 1999

5. Références

- Beer, J., I Brunner et E. Grieder, 2005. Radioaktivität in aquatischen Systemen Schlussbericht 2004. Rapport EAWAG du Gruppe für Radioaktive Tracer, 10p.
- Caillet, S., P. Arpagaus, F. Monna et J. Dominik, 2001. Factors controlling Be-7 and Pb-210 atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland. J. Environ. Radioact. 53:241-256.
- Dulinsky, M. et J. Dominik, 1992. Density correction in Gamma spectrometry of lake sediments. Nucl. Geophys. 6: 237-242.
- Höfert, M., P. Vojtyla et D. Wittekind, 1999. Contrôle de l'environnement autour du CERN. In H. Völkle, H. Surbeck, Ch. Murith et M. Gobet, Radioactivité de l'environnement et doses de rayonnement en Suisse 1998, BAG OFSP, Bern, pp B.8.4.1 – B.8.4.9.
- Loizeau, J.-L., Ph. Arpagaus et W. Wildi, 2000. Rapport sur les mesures de la radioactivité dans le Nant d'Avril (Genève) Octobre 1999-Octobre 2000. Rapport pour l'OFSP, Berne, 22p.
- Loizeau, J.-L., V. Lopez et Ph. Arpagaus, 2003. Rapport No 4 sur les mesures de la radioactivité dans le Nant d'Avril (Genève) Octobre 2002 Novembre 2003. Rapport pour l'OFSP, Berne, 31p.

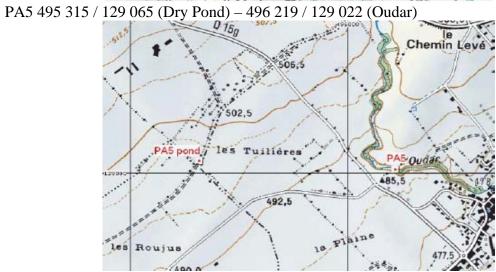
Versoix, le 21 juillet 2006


Jean-Luc Loizeau

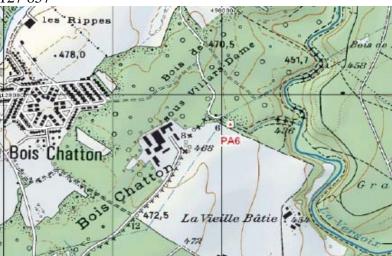
6.1. Annexes

PA1 492 607 / 119 369

PA2 490 384 / 122 838



PA3 491 084 / 124 383 - 490 582 / 124 859



PA4 492 915 / 129 207

PA6 498 040 / 127 857

PA7 497 991 / 124 692

PA8 496 980 / 123 018

Pisciculture 499 631 / 126 403

7.4. Résultats des mesures directes dans le milieu terrestre

MESURES IN SITU LMRE / IRSN

LIEU			Coordonné	es	Altitude	Spectre	Détecteur	Date de mesure	Durée de mesure	
BA4					(m)				en secondes	
			494444	122851	457		hanibal	21/9/05 9:08	6390	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité A=N/(ε*fa* Nf/No	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	*Emb)	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		3	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	464	0,07	5,41	2,65	1,30	24,81	15,7		
Ra-226	186,20	126	0,02	3,29	3,59	1,30	18,83			
Pb-214	351,93	3492	0,55	35,80	4,61	1,24	12,25	21,9		
Bi-214	609,32	3436	0,54	45,00	5,88	1,17	7,92	21,9	5,64E-01	12,3
Ac-228	911,07	1888	0,30	25,80	7,19	1,15	5,71	24,2	7,49E-01	18,1
Pb-212	238,63	5523	0,86	43,50	4,00	1,27	16,17	24,2		
Bi-212	727,33	507	0,08	6,64	6,42	1,16	6,85	23,4		
T1-208	583,19	2745	0,43	85,10	5,76	1,17	8,21	9,1		
K-40	1460,83	9454	1,48	10,67	9,17	1,13	3,92	341,0	5,12E-02	17,5
Be-7	477,60	326	0,05	10,43	5,25	1,18	9,65	8,2		
Cs-137	661,66	1669	0,26	85,20	6,12	1,17	7,40	5,8	1,92E-01	1,1
Autres										
Pic d'annihilation	511,00	1506	0,24							
Ar-41	1293,60	<110	<0,017	99,10						
							Total:	489,4		49,0

CI = Chambre d'ionisation

Ī	H*(10)	Naturel	artificiel	cosmique	Insitu	CI		Ecart en % CI
	en nSv/h	47,9	1,1	44,0	93,1	99,3		6,7

LIEU PA1			Coordonnées		Altitude	Spectre	Détecteur	mesure	Durée de mesure	
IAI			Coordonnees		(m)	Specife	Detecteur	mesure	en secondes	
			493564	121652	445		hanibal	22/9/05 9:34	5656	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A	_	%	A=N/ε*fa	fd = H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	409	0,07	5,41	2,65	1,30	24,81	15,6		
Ra-226	186,20	687	0,12	3,29	3,59	1,30	18,83			
Pb-214	351,93	3689	0,65	35,80	4,61	1,24	12,25	26,1		
Bi-214	609,32	3878	0,69	45,00	5,88	1,17	7,92	27,9	5,64E-01	15,7
Ac-228	911,07	1511	0,27	25,80	7,19	1,15	5,71	21,9	7,49E-01	16,4
Pb-212	238,63	4535	0,80	43,50	4,00	1,27	16,17	22,5		
Bi-212	727,33	516	0,09	6,64	6,42	1,16	6,85	26,9		
T1-208	583,19	2084	0,37	85,10	5,76	1,17	8,21	7,8		
K-40	1460,83	8461	1,50	10,67	9,17	1,13	3,92	344,7	5,12E-02	17,7
Be-7	477,60	254	0,04	10,43	5,25	1,18	9,65	7,2		
Cs-137	661,66	1756	0,31	85,20	6,12	1,17	7,40	6,9	1,92E-01	1,3
Autres										
Pic d'annihilation	511,00	1191	0,21							
Ar-41	1293,60	<104	< 0,018	99,10						
							Total :	500,6		51,1

CI

102,5

Naturel artificiel

1,3

49,8

cosmique

43,8

Insitu

94,9

H*(10)

en nSv/h

30

Ecart en % CI

8,0

LICH			G 1 1		A 1.**. 1	C .	Da	Date de	D (1	"
LIEU			Coordonné	es	Altitude	Spectre	Détecteur	mesure	Durée de mesure	
PA3					(m)				en secondes	
		T	490614	125098	493		hanibal	20/9/05 9:37	7484	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	$fd = H^*(10)/A$	H*(10)=A*fd
	(keV)		N	(%)	homogène		3	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	596	0,08	5,41	2,65	1,30	24,81	17,2		
Ra-226	186,20	1012	0,14	3,29	3,59	1,30	18,83			
Pb-214	351,93	3964	0,53	35,80	4,61	1,24	12,25	21,2		
Bi-214	609,32	3991	0,53	45,00	5,88	1,17	7,92	21,7	5,64E-01	12,2
Ac-228	911,07	1068	0,14	25,80	7,19	1,15	5,71	11,7	7,49E-01	8,8
Pb-212	238,63	3619	0,48	43,50	4,00	1,27	16,17	13,6		
Bi-212	727,33	351	0,05	6,64	6,42	1,16	6,85	13,8		
Tl-208	583,19	1543	0,21	85,10	5,76	1,17	8,21	4,4		
K-40	1460,83	5309	0,71	10,67	9,17	1,13	3,92	163,5	5,12E-02	8,4
Be-7	477,60	336	0,04	10,43	5,25	1,18	9,65	7,2		
Cs-137	661,66	4039	0,54	85,20	6,12	1,17	7,40	12,0	1,92E-01	2,3
Autres										
Pic d'annihilation	511,00	1131	0,15							
Ar-41	1293,60	<94	<0,013	99,10						
							Total:	274,1		31,7
CI = Chambre d'ionisation										

 H*(10)
 Naturel
 artificiel
 cosmique
 Insitu
 CI
 Ecart en % CI

 en nSv/h
 29,4
 2,3
 44,6
 76,3
 82,7
 82,7

LIEU			Coordonnées		Altitude	Spectre	Détecteur	Date de mesure	Durée de mesure	
PA5					(m)				en secondes	
			495371	129665	510		hanibal	20/9/05 12:45	6312	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net	_	fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	588	0,09	5,41	2,65	1,30	24,81	20,1		
Ra-226	186,20	759	0,12	3,29	3,59	1,30	18,83			
Pb-214	351,93	2780	0,44	35,80	4,61	1,24	12,25	17,6		
Bi-214	609,32	2646	0,42	45,00	5,88	1,17	7,92	17,1	5,64E-01	9,6
Ac-228	911,07	1314	0,21	25,80	7,19	1,15	5,71	17,0	7,49E-01	12,8
Pb-212	238,63	3961	0,63	43,50	4,00	1,27	16,17	17,6		
Bi-212	727,33	352	0,06	6,64	6,42	1,16	6,85	16,4		
T1-208	583,19	1738	0,28	85,10	5,76	1,17	8,21	5,8		
K-40	1460,83	5927	0,94	10,67	9,17	1,13	3,92	216,4	5,12E-02	11,1
Be-7	477,60	354	0,06	10,43	5,25	1,18	9,65	9,0		
Cs-137	661,66	2102	0,33	85,20	6,12	1,17	7,40	7,4	1,92E-01	1,4
Autres										
Pic d'annihilation	511,00	1136	0,18							
Ar-41	1293,60	<92	< 0,015	99,10						
							Total:	337,0		34,9

CI = Chambre d'ionisation

H*(10)	Naturel	artificiel	cosmique	Insitu	CI		Ecart en % CI
en nSv/h	33,5	1,4	44,9	79,8	83,6		4,8

LIEU PA6			Coordonnée		Altitude (m)	Spectre	Détecteur	Date de mesure	Durée de mesure en secondes	
			497669	127912	475		hanibal	20/9/05 15:04	6096	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	461	0,08	5,41	2,65	1,30	24,81	16,3	• 5	,
Ra-226	186,20			3,29	3,59	1,30	18,83			
Pb-214	351,93	3273	0,54	35,80	4,61	1,24	12,25	21,5		
Bi-214	609,32	3195	0,52	45,00	5,88	1,17	7,92	21,3	5,64E-01	12,0
Ac-228	911,07	1776	0,29	25,80	7,19	1,15	5,71	23,9	7,49E-01	17,9
Pb-212	238,63	4792	0,79	43,50	4,00	1,27	16,17	22,1		
Bi-212	727,33	507	0,08	6,64	6,42	1,16	6,85	24,5		
T1-208	583,19	2345	0,38	85,10	5,76	1,17	8,21	8,1		
K-40	1460,83	9051	1,48	10,67	9,17	1,13	3,92	342,2	5,12E-02	17,5
Be-7	477,60	200	0,03	10,43	5,25	1,18	9,65	5,2		
Cs-137	661,66	984	0,16	85,20	6,12	1,17	7,40	3,6	1,92E-01	0,7
Autres										
Pic d'annihilation	511,00	1419	0,23							
Ar-41	1293,60	<105	<0,017	99,10						
							Total :	485,1		48,1
CI = Chambre d'ionisation							Total .	100,1		70,1
H*(10)	Naturel	artificiel	cosmique	Insitu		CI			Ecart en % CI	

95,8

92,4

44,3

47,4

en nSv/h

0,7

3,7

LIEU			C1		A 14.4 1-	C	Danas	Date de	Don't do more	
LIEU			Coordonnée	S	Altitude	Spectre	Détecteur	mesure	Durée de mesure	
PA7					(m)				en secondes	
F			497864	124690	434		hanibal	21/9/05 11:24	6507	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60		0,00	5,41	2,65	1,30	24,81	0,0		
Ra-226	186,20	348	0,05	3,29	3,59	1,30	18,83			
Pb-214	351,93	3280	0,50	35,80	4,61	1,24	12,25	20,2		
Bi-214	609,32	3440	0,53	45,00	5,88	1,17	7,92	21,5	5,64E-01	12,1
Ac-228	911,07	1619	0,25	25,80	7,19	1,15	5,71	20,4	7,49E-01	15,3
Pb-212	238,63	4551	0,70	43,50	4,00	1,27	16,17	19,6		
Bi-212	727,33	438	0,07	6,64	6,42	1,16	6,85	19,8		
T1-208	583,19	2289	0,35	85,10	5,76	1,17	8,21	7,4		
K-40	1460,83	8187	1,26	10,67	9,17	1,13	3,92	290,0	5,12E-02	14,8
Be-7	477,60	311	0,05	10,43	5,25	1,18	9,65	7,6		
Cs-137	661,66	1986	0,31	85,20	6,12	1,17	7,40	6,8	1,92E-01	1,3
Autres										
Pic d'annihilation	511,00	1303	0,20							
Ar-41	1293,60	<104	<0,016	99,10						
							Total :	406,5		43,5
CI = Chambre d'ionisation										·

 \mathbf{CI}

93,2

H*(10)

en nSv/h

Naturel

42,2

artificiel

1,3

cosmique

43,6

Insitu

87,2

34

Ecart en % CI

6,9

LIEU			Coordonnée	S	Altitude	Spectre	Détecteur	Date de mesure	Durée de mesure	
РА7СН			400004	404705	(m)		hanihal	24/0/05 45-20	en secondes	
			498001	124765	428		hanibal	21/9/05 15:28	6971	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	742	0,11	5,41	2,65	1,30	24,81	22,9		
Ra-226	186,20	977	0,14	3,29	3,59	1,30	18,83			
Pb-214	351,93	4039	0,58	35,80	4,61	1,24	12,25	23,2		
Bi-214 (Total U-238)	609,32	4042	0,58	45,00	5,88	1,17	7,92	23,6	5,64E-01	13,3
Ac-228 (Total Th-	044.0=			• • • • •	- 10				- 10- 01	
232)	911,07	2440	0,35	25,80	7,19	1,15	5,71	28,7	7,49E-01	21,5
Pb-212	238,63	6985	1,00	43,50	4,00	1,27	16,17	28,1		
Bi-212	727,33	698	0,10	6,64	6,42	1,16	6,85	29,5		
T1-208	583,19	3395	0,49	85,10	5,76	1,17	8,21	10,3		
K-40	1460,83	10909	1,56	10,67	9,17	1,13	3,92	360,6	5,12E-02	18,5
Be-7	477,60	395	0,06	10,43	5,25	1,18	9,65	9,1		
Cs-137	661,66	2391	0,34	85,20	6,12	1,17	7,40	7,6	1,92E-01	1,5
Autres										
Pic d'annihilation	511,00	1724	0,25							
Ar-41	1293,60	<119	< 0,017	99,10						
							Total:	536,0		54,7

CI = Chambre d'ionisation

H*(10)	Naturel	artificiel	cosmique	Insitu	CI		Ecart en % CI
en nSv/h	53,2	1,5	43,5	98,2	103,5		5,4

LIEU	N° LMRE		Coordonnée	es	Altitude	Spectre ID	Détecteur	Date de mesure	Durée de mesure	
BA4	61247				(m)				en secondes	
			494444	122851	457		hanibal	21/3/06 16:41	6174	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité A=N/(ε*fa*	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	Nf/No *Emb)	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	728	0,12	5,41	2,65	1,30	24,81	25,4		
Ra-226	186,20	509	0,08	3,29	3,59	1,30	18,83			
Pb-214	351,93	3010	0,49	35,80	4,61	1,24	12,25	19,5		
Bi-214	609,32	3203	0,52	45,00	5,88	1,17	7,92	21,1	5,64E-01	11.9
Ac-228	911,07	1577	0,26	25,80	7,19	1,15	5,71	20,9	7,49E-01	15.7
Pb-212	238,63	4239	0,69	43,50	4,00	1,27	16,17	19,3		
Bi-212	727,33	477	0,08	6,64	6,42	1,16	6,85	22,8		
T1-208	583,19	2112	0,34	85,10	5,76	1,17	8,21	7,2		
K-40	1460,83	7836	1,27	10,67	9,17	1,13	3,92	292,5	5,12E-02	15.0
Be-7	477,60	368	0,06	10,43	5,25	1,18	9,65	9,5		
Cs-137	661,66	1367	0,22	85,20	6,12	1,17	7,40	4,9	1,92E-01	0.9
Autres										
Pic d'annihilation	511,00	1149	0,19							
Ar-41	1293,60	<97	<0,016	99,10						
Cl - Chambra							Total:	438,2		43.5

CI = Chambre d'ionisation

H*(10)	Naturel	artificiel	cosmique	Insitu	CI		Ecart en % CI
en nSv/h	42,5	0,9	44,0	87,5	98,0		12,0

LIEU PA3	N° LMRE 61252		Coordonnées		Altitude (m)	Spectre ID	Détecteur	Date de mesure	Durée de mesure en secondes	
	01202		490614	12509 8	493		hanibal	22/3/06 15:24	3280	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	196	0,06	5,41	2,65	1,30	24,81	12,9		
Ra-226	186,20	379	0,12	3,29	3,59	1,30	18,83			
Pb-214	351,93	1782	0,54	35,80	4,61	1,24	12,25	21,7		
Bi-214	609,32	1671	0,51	45,00	5,88	1,17	7,92	20,7	5,64E-01	11,7
Ac-228	911,07	394	0,12	25,80	7,19	1,15	5,71	9,8	7,49E-01	7,4
Pb-212	238,63	1126	0,34	43,50	4,00	1,27	16,17	9,6		
Bi-212	727,33	111	0,03	6,64	6,42	1,16	6,85	10,0		
T1-208	583,19	570	0,17	85,10	5,76	1,17	8,21	3,7		
K-40	1460,83	2210	0,67	10,67	9,17	1,13	3,92	155,3	5,12E-02	8,0
Be-7	477,60	167	0,05	10,43	5,25	1,18	9,65	8,1		
Cs-137	661,66	1457	0,44	85,20	6,12	1,17	7,40	9,8	1,92E-01	1,9
Autres Pic										
d'annihilation	511,00	399	0,12							
Ar-41	1293,60	<55	< 0,017	99,10						
							Total:	251,9		28,9
CI = Chambre d'ionisation										
U*/40\	Nictorial	a4:£:a:a1		T ~:4	1	CT	ĺ		Food on 0/ CT	

H*(10)	Naturel	artificiel	cosmique	Insitu	CI		Ecart en % CI
en nSv/h	27,0	1,9	44,6	73,5	85,4		16,2

						Spectre				
LIEU	N° LMRE		Coordonnée	es	Altitude	ID	Détecteur	Date de mesure	Durée de mesure	
PA5	61250				(m)				en secondes	
			495371	129665	510		hanibal	22/3/06 11:54	5354	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		3	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60	898	0,17	5,41	2,65	1,30	24,81	36,2		
Ra-226	186,20	492	0,09	3,29	3,59	1,30	18,83			
Pb-214	351,93	2407	0,45	35,80	4,61	1,24	12,25	18,0		
Bi-214	609,32	2384	0,45	45,00	5,88	1,17	7,92	18,1	5,64E-01	10,2
Ac-228	911,07	1107	0,21	25,80	7,19	1,15	5,71	16,9	7,49E-01	12,7
Pb-212	238,63	2821	0,53	43,50	4,00	1,27	16,17	14,8		
Bi-212	727,33	325	0,06	6,64	6,42	1,16	6,85	17,9		
T1-208	583,19	1380	0,26	85,10	5,76	1,17	8,21	5,5		
K-40	1460,83	4775	0,89	10,67	9,17	1,13	3,92	205,5	5,12E-02	10,5
Be-7	477,60	303	0,06	10,43	5,25	1,18	9,65	9,1		
Cs-137	661,66	1381	0,26	85,20	6,12	1,17	7,40	5,7	1,92E-01	1,1
Autres										
Pic d'annihilation	511,00	904	0,17							
Ar-41	1293,60	<75	< 0,014	99,10						
							Total :	341,9		34,5
CI = Chambre d'ionisation							10001			- 1,0
H*(10)	Naturel	artificie l	cosmique	Insitu		CI			Ecart en % CI	

90,6

33,4

en nSv/h

1,1

44,9

79,4

14,1

LIEU	N° LMRE		Coordonnée	es	Altitude	Spectre ID	Détecteur	Date de mesure	Durée de mesure	
PA6	061248+061	1249			(m)				en secondes	
			497669	127912	475		hanibal	20/9/05 15:04	5103	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60		0,00	5,41	2,65	1,30	24,81	0,0		
Ra-226	186,20	709		3,29	3,59	1,30	18,83			
Pb-214	351,93	2878	0,56	35,80	4,61	1,24	12,25	22,6		
Bi-214	609,32	2697	0,53	45,00	5,88	1,17	7,92	21,5	5,64E-01	12,1
Ac-228	911,07	1241	0,24	25,80	7,19	1,15	5,71	19,9	7,49E-01	14,9
Pb-212	238,63	3686	0,72	43,50	4,00	1,27	16,17	20,3		
Bi-212	727,33	256	0,05	6,64	6,42	1,16	6,85	14,8		
T1-208	583,19	1656	0,32	85,10	5,76	1,17	8,21	6,9		
K-40	1460,83	7068	1,39	10,67	9,17	1,13	3,92	319,2	5,12E-02	16,3
Be-7	477,60	176	0,03	10,43	5,25	1,18	9,65	5,5		
Cs-137	661,66	579	0,11	85,20	6,12	1,17	7,40	2,5	1,92E-01	0,5
Autres										
Pic d'annihilation	511,00	1070	0,21							
Ar-41	1293,60	<99	<0,019	99,10						
CI = Chambre							Total:	430,6		43,9

CI = Chambre d'ionisation

H*(10)	Naturel	artificiel	cosmique	Insitu	CI		Ecart en % CI
en nSv/h	43,4	0,5	44,3	88,2	99,9		13,3

LIEU PA7 F	N° LMRE 61245		Coordonnées 497864	124690	Altitude (m)	Spectre ID	Détecteur hanibal	Date de mesure 21/3/06 11:43	Durée de mesure en secondes 4594	
	Energie	Surface	cps	Embr.	Facteur	Nf/No	rendement	Activité	Facteur	H*(10)
Isotope		nette	net		fa= Ø/A		%	A=N/ε*fa	fd= H*(10)/A	H*(10)=A*fd
	(keV)		N	(%)	homogène		ε	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60		0,00	5,41	2,65	1,30	24,81	0,0		
Ra-226	186,20		0,00	3,29	3,59	1,30	18,83			
Pb-214	351,93	4928	1,07	35,80	4,61	1,24	12,25	42,9		
Bi-214	609,32	5779	1,26	45,00	5,88	1,17	7,92	51,2	5,64E-01	28,9
Ac-228	911,07	1146	0,25	25,80	7,19	1,15	5,71	20,4	7,49E-01	15,3
Pb-212	238,63	2920	0,64	43,50	4,00	1,27	16,17	17,8		
Bi-212	727,33	293	0,06	6,64	6,42	1,16	6,85	18,8		
T1-208	583,19	1292	0,28	85,10	5,76	1,17	8,21	6,0		
K-40	1460,83	5370	1,17	10,67	9,17	1,13	3,92	269,4	5,12E-02	13,8
Be-7	477,60	168	0,04	10,43	5,25	1,18	9,65	5,8		
Cs-137	661,66	1524	0,33	85,20	6,12	1,17	7,40	7,4	1,92E-01	1,4
Autres										
Pic d'annihilation	511,00	833	0,18							
Ar-41	1293,60	<87	<0,019	99,10						
CI = Chambre d'ionisation							Total:	432,3		59,4

CI

103,5

H*(10)

en nSv/h

Naturel

58,0

artificiel

1,4

cosmique

43,6

Insitu

103,0

Ecart en % CI

0,5

MESURES IN SITU OFSP 2005

Site de mesure:			coordonnées		Altitude:	identification	durée :	début de la mesure:	
CERN Rue Booster	cps	brumeux		492709	121168	452	EGNC 30	5000	07.10.2005 10:11
Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	débit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92.60	683	50.88	0.14	22.33	1.30E-04	47.0		
Ra-226	186.20	460	38	0.09	17.67	1.20E-04	43.4		
Pb-214	351.93	2903	5.4	0.58	11.03	1.71E-03	30.8		
Bi-214 (Total U-238)	609.32	2805	4.6	0.56	6.85	2.76E-03	29.7	5.64E-01	16.7
Ac-228 (Total Th-232)	911.07	1310	7.1	0.26	4.89	2.07E-03	25.9	7.49E-01	19.4
Pb-212	238.63	3803	4.9	0.76	15.01	1.73E-03	29.3		
Bi-212	727.33	409	17.9	0.08	5.89	4.30E-04	32.3		
TI-208	583.19	1673	6.8	0.33	7.12	1.76E-03	26.7		
K-40	1'460.83	6474	2.5	1.29	3.35	9.70E-04	398.2	5.12E-02	20.4
Be-7	477.60	225	34.4	0.05	8.47	5.41E-04	9.8	1.90E-02	0.2
Autres									
Pic d'annihilation	511.00	3524.8	4.5						
Ar-41	1'291.00								
Cs-137	661.66	898	10.3	0.18	6.38	5.20E-03	5.4	1.92E-01	1.0
						Total :	678.5		57.7

^{(*1 =} facteurs de conversion pour l'activité et le débit d'exposition pour une distribution homogène dans le sol

débit d'exposition:	naturel	artificiel	cosmique	Insitu	R+S	déviation	R+S
en nSv/h	56.7	1.0	43.9	101.7	102.8	en %	1.1

Site de mesure:			coordonnées		identification	durée :	début de la mesure:	
CERN Choully	175 cps	brumeux	490035	121272	460	EGNC 30	5000	06.10.2005 16:02

Isotope	Energie	Aire nette	Aire nette	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	débit de dose ODL=Ak*fd
	(keV)	(Counts)	Inc %	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92.60				22.33	1.30E-04			
Ra-226	186.20	602.5	37	0.12	17.67	1.20E-04	56.8		
Pb-214	351.93	2354.6	6.8	0.47	11.03	1.71E-03	25.0		
Bi-214 (Total U-238)	609.32	2397.2	5.1	0.48	6.85	2.76E-03	25.4	5.64E-01	14.3
Ac-228 (Total Th-232)	911.07	1228.1	7.6	0.25	4.89	2.07E-03	24.3	7.49E-01	18.2
Pb-212	238.63	3492	4.9	0.70	15.01	1.73E-03	26.9		
Bi-212	727.33	350.9	20	0.07	5.89	4.30E-04	27.7		
TI-208	583.19	1587	7	0.32	7.12	1.76E-03	25.3		
K-40	1'460.83	6828.8	2.5	1.37	3.35	9.70E-04	420.0	5.12E-02	21.5
Be-7	477.60	179.7	48	0.04	8.47	5.41E-04	7.8	1.90E-02	0.1
Autres									
Pic d'annihilation	511.00	965.7	11.3						
Ar-41	1'291.00								
Cs-137	661.66	1159.2	8.3	0.23	6.38	5.20E-03	7.0	1.92E-01	1.3
						Total:	646.2		55.5

(*1 = facteurs de conversion pour l'activité et le débit d'exposition pour une distribution homogène dans le sol

débit d'exposition:	naturel	artificiel	cosmique	Insitu	R+S	déviation	R+S	
en nSv/h	54.1	1.3	44.1	99.5	99.9	en %	0.4	

Site de mesure:	400 220 ana	مسخت مسخت		coordonnée		Altitude:	identification	durée :	début de la mesure:
CERN La praille Isotope	180-230 cps Energie	Aire nette	Aire nette Inc	Netto- fläche N	120635 egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/e*fa	facteur (*1 fd=ODL/Ak	06.10.2005 18:01 ebit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92.60	416.5	55	0.08	22.33	1.30E-04	28.7		
Ra-226	186.20	603.3	31	0.12	17.67	1.20E-04	56.9		
Pb-214	351.93	2603.5	5.9	0.52	11.03	1.71E-03	27.6		
Bi-214 (Total U-238)	609.32	2565.2	4.8	0.51	6.85	2.76E-03	27.1	5.64E-01	15.3
Ac-228 (Total Th-232)	911.07	1294.7	6.9	0.26	4.89	2.07E-03	25.6	7.49E-01	19.2
Pb-212	238.63	3779.4	4.7	0.76	15.01	1.73E-03	29.1		
Bi-212	727.33	336.6	21.2	0.07	5.89	4.30E-04	26.6		
TI-208	583.19	1687.7	6.5	0.34	7.12	1.76E-03	27.0		
K-40	1'460.83	6512.8	2.5	1.30	3.35	9.70E-04	400.5	5.12E-02	20.5
Be-7	477.60	232.9	35.5	0.05	8.47	5.41E-04	10.2	1.90E-02	0.2
Cs-137	661.66	1411	7.5	0.28	6.38	5.20E-03	8.5	1.92E-01	1.6
Autres									
Pic d'annihilation	511.00	6341.2	3			(cm ⁻² s ⁻¹ /Bqm ⁻³)	Bq/m ³		
Ar-41	1'291.00	261.4	19.8	0.05	3.69	7.64E-04	18.5	3.52E-01	6.5
						Total:	686.3		63.3
ebit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	55.2	8.1		43.3	106.6		104.2	en %	-2.3

Site de mesure:				coordonnée	S	Altitude:	identification	durée :	début de la mesure:
CERN Maisonnex	cps	brumeux		493561	121649	440	EGNC 30	5000	07.10.2005 07:49
Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	ebit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92.60				22.33	1.30E-04			
Ra-226	186.20	687.4	30	0.14	17.67	1.20E-04	64.8		
Pb-214	351.93	3673.8	4.7	0.73	11.03	1.71E-03	39.0		
Bi-214 (Total U-238)	609.32	3526.5	4.1	0.71	6.85	2.76E-03	37.3	5.64E-01	21.0
Ac-228 (Total Th-232)	911.07	1245	7.5	0.25	4.89	2.07E-03	24.6	7.49E-01	18.4
Pb-212	238.63	3459.5	5.2	0.69	15.01	1.73E-03	26.7		
Bi-212	727.33	445.6	16.7	0.09	5.89	4.30E-04	35.2		
TI-208	583.19	1708.3	6.7	0.34	7.12	1.76E-03	27.3		
K-40	1'460.83	6598.4	2.5	1.32	3.35	9.70E-04	405.8	5.12E-02	20.8
Be-7	477.60	169	42.2	0.03	8.47	5.41E-04	7.4	1.90E-02	0.1
Autres									
Pic d'annihilation	511.00	1052.7	11.7						
Ar-41	1'291.00								
Cs-137	661.66	1158	8.2	0.23	6.38	5.20E-03	7.0	1.92E-01	1.3
						Total :	675.0		61.7
ebit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	60.4	1.3		43.7	105.5		103.6	en %	-1.8

CERN	_			coordonnée	es	Altitude:	identification	durée :	début de la mesure:
Ferney-Voltaire (F)	150 cps	beau		497862	124689	431	EGNC 30	5000	07.10.2005 12:23
Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	ebit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92.60				22.33	1.30E-04			
Ra-226	186.20	360	50	0.07	17.67	1.20E-04	34.0		
Pb-214	351.93	2699	5.8	0.54	11.03	1.71E-03	28.6		
Bi-214 (Total U-238)	609.32	2559	4.9	0.51	6.85	2.76E-03	27.1	5.64E-01	15.3
Ac-228 (Total Th-232)	911.07	1210	7.5	0.24	4.89	2.07E-03	23.9	7.49E-01	17.9
Pb-212	238.63	3385	6.3	0.68	15.01	1.73E-03	26.1		
Bi-212	727.33	382	18	0.08	5.89	4.30E-04	30.2		
TI-208	583.19	1469	7.4	0.29	7.12	1.76E-03	23.5		
K-40	1'460.83	5777	2.7	1.16	3.35	9.70E-04	355.3	5.12E-02	18.2
Be-7	477.60	167	42	0.03	8.47	5.41E-04	7.3	1.90E-02	0.1
Autres									
Pic d'annihilation	511.00	812	12.2						
Ar-41	1'291.00								
Cs-137	661.66	1667	6.9	0.33	6.38	5.20E-03	10.0	1.92E-01	1.9
						Total:	565.9		53.4
ebit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	51.5	1.9		43.6	97.0		96.5	en %	-0.5

CERN				coordonnée	es	Altitude:	identification	durée :	début de la mesure:
Collex	190 cps	beau		497996	124760	425	EGNC 30	5000	07.10.2005 15:44
Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	débit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92.60				22.33	1.30E-04			
Ra-226	186.20	925	25	0.19	17.67	1.20E-04	87.2		
Pb-214	351.93	2779	5.9	0.56	11.03	1.71E-03	29.5		
Bi-214 (Total U-238)	609.32	2880	4.7	0.58	6.85	2.76E-03	30.5	5.64E-01	17.2
Ac-228 (Total Th-232)	911.07	1524	6.6	0.30	4.89	2.07E-03	30.1	7.49E-01	22.6
Pb-212	238.63	4776	5.1	0.96	15.01	1.73E-03	36.8		
Bi-212	727.33	438	18	0.09	5.89	4.30E-04	34.6		
TI-208	583.19	2099	6	0.42	7.12	1.76E-03	33.5		
K-40	1'460.83	6640	2.5	1.33	3.35	9.70E-04	408.4	5.12E-02	20.9
Be-7	477.60	220	39	0.04	8.47	5.41E-04	9.6	1.90E-02	0.2
Autres									
Pic d'annihilation	511.00	1054.5	10.5						
Ar-41	1'291.00								
Cs-137	661.66	1422	7.4	0.28	6.38	5.20E-03	8.6	1.92E-01	1.6
						Total:	708.7		62.5

(*1 = facteurs de conversion pour l'activité et le débit d'exposition pour une distribution homogène dans le sol

débit d'exposition:	naturel	artificiel	cosmique	Insitu	R+S	déviation	R+S
en nSv/h	60.8	1.6	43.5	106.0	105.1	en %	-0.8

MESURES IN SITU OFSP 2006

début de la identification Site de mesure: coordonnées Altitude: durée: mesure: **CERN Rue Booster** 137 cps 492709 121168 452 EGNC 30 5000 22/03/2006 13:29 nuageux

Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	débit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60				22,33	1,30E-04			
Ra-226	186,20	632	32	0,13	17,67	1,20E-04	59,6		
Pb-214	351,93	2194	6,7	0,44	11,03	1,71E-03	23,3		
Bi-214 (U-238)	609,32	2080	5,5	0,42	6,85	2,76E-03	22,0	5,64E-01	12,4
Ac-228 (Th-232)	911,07	1256	7,2	0,25	4,89	2,07E-03	24,8	7,49E-01	18,6
Pb-212	238,63	3582	6,1	0,72	15,01	1,73E-03	27,6		
Bi-212	727,33	320	22	0,06	5,89	4,30E-04	25,3		
Tl-208	583,19	1538	7,2	0,31	7,12	1,76E-03	24,6		
K-40	1 460,83	6012	2,6	1,20	3,35	9,70E-04	369,7	5,12E-02	18,9
Be-7	477,60	210	35	0,04	8,47	5,41E-04	9,2	1,90E-02	0,2
Autres									
Pic d'annihilation	511,00	840	13						
Ar-41	1 291,00								
Cs-137	661,66	752	11	0,15	6,38	5,20E-03	4,5	1,92E-01	0,9
						Total:	590,5		51,0
débit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	50,1	0,9		43,9	94,9		98,4	en %	3,7

Site de mesure:	Site de mesure:			s	Altitude:	identification	durée :	début de la mesure:
CERN Maisonnex	150 cps	pluvieux	493561	121649	440	EGNC 30	3199	23/03/2006 10:50

Isotope	Energie	Aire nette	Aire nette	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	ebit de dose ODL=Ak*fd
	(keV)	(Counts)	Inc %	(cps)	%	(Bq/kg)	(Bq/kg)	nSv/h*Bq/kg	(nSv/h)
Th-234	92,60				22,33	1,30E-04	(1 5)	1 0	, ,
Ra-226	186,20	206	62	0,06	17,67	1,20E-04	30,4		
Pb-214	351,93	1815	8,1	0,57	11,03	1,71E-03	30,1		
Bi-214 (U-238)	609,32	1858	5,9	0,58	6,85	2,76E-03	30,7	5,64E-01	17,3
Ac-228 (Th-232)	911,07	643	10,7	0,20	4,89	2,07E-03	19,9	7,49E-01	14,9
Pb-212	238,63	1970	8,3	0,62	15,01	1,73E-03	23,7		
Bi-212	727,33	155	31	0,05	5,89	4,30E-04	19,1		
T1-208	583,19	862	10,1	0,27	7,12	1,76E-03	21,5		
K-40	1 460,83	3603	3,4	1,13	3,35	9,70E-04	346,3	5,12E-02	17,7
Be-7	477,60	102	57	0,03	8,47	5,41E-04	7,0	1,90E-02	0,1
Autres									
Pic d'annihilation	511,00	533	18						
Ar-41	1 291,00								
Cs-137	661,66	714	10,5	0,22	6,38	5,20E-03	6,7	1,92E-01	1,3
						Total:	535,4		51,4
ebit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	50,1	1,3		43,7	95,1		99,9	en %	5,1

CERN			coordonnées	Altitude:	identification	durée :	début de la mesure:
CERN Point 6	137 cps	pluie légère		465	EGNC 30	4428	22/03/2006 10:02

Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	ebit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60				22,33	1,30E-04			
Ra-226	186,20	370	47	0,08	17,67	1,20E-04	39,4		
Pb-214	351,93	2519	6,6	0,57	11,03	1,71E-03	30,2		
Bi-214 (U-238)	609,32	2474	5,3	0,56	6,85	2,76E-03	29,5	5,64E-01	16,7
Ac-228 (Th-232)	911,07	1093	8,3	0,25	4,89	2,07E-03	24,4	7,49E-01	18,3
Pb-212	238,63	3094	6,7	0,70	15,01	1,73E-03	26,9		
Bi-212	727,33	306	23	0,07	5,89	4,30E-04	27,3		
T1-208	583,19	1438	7,7	0,32	7,12	1,76E-03	25,9		
K-40	1 460,83	5701	2,7	1,29	3,35	9,70E-04	395,9	5,12E-02	20,3
Be-7	477,60	109	76	0,02	8,47	5,41E-04	5,4	1,90E-02	0,1
Autres									
Pic d'annihilation	511,00	813	14						
Ar-41	1 291,00								
Cs-137	661,66	565	14	0,13	6,38	5,20E-03	3,8	1,92E-01	0,7
						Total:	608,7		56,0
ebit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	55,3	0,7		44,2	100,2		99,5	en %	-0,7

CERN	ERN			es	Altitude:	identification	durée :	début de la mesure:
Collex	160 cps	ps Pluie pdt la mesure		124760	425	EGNC 30	5000	22/03/2006 15:40

Isotope	Energie	Aire nette	Aire nette Inc	Netto- fläche N	egnc 30 ε=N/Ø	facteur (*1 fa= Ø/A	Activité Ak=N/ε*fa	facteur (*1 fd=ODL/Ak	débit de dose ODL=Ak*fd
	(keV)	(Counts)	%	(cps)	%	(Bq/kg)	(Bq/kg)	(nSv/h*Bq/kg)	(nSv/h)
Th-234	92,60				22,33	1,30E-04	-	-	
Ra-226	186,20	487	38	0,10	17,67	1,20E-04	45,9		
Pb-214	351,93	3491	5,1	0,70	11,03	1,71E-03	37,0		
Bi-214 (U-238)	609,32	3571	4,1	0,71	6,85	2,76E-03	37,8	5,64E-01	21,3
Ac-228 (Th-232)	911,07	1460	7	0,29	4,89	2,07E-03	28,8	7,49E-01	21,6
Pb-212	238,63	3890	5,8	0,78	15,01	1,73E-03	30,0		
Bi-212	727,33	449	17	0,09	5,89	4,30E-04	35,4		
Tl-208	583,19	1817	6,4	0,36	7,12	1,76E-03	29,0		
K-40	1 460,83	6316	2,6	1,26	3,35	9,70E-04	388,4	5,12E-02	19,9
Be-7	477,60	177	48	0,04	8,47	5,41E-04	7,7	1,90E-02	0,1
Autres									
Pic d'annihilation	511,00	922	11						
Ar-41	1 291,00								
Cs-137	661,66	1410	8,3	0,28	6,38	5,20E-03	8,5	1,92E-01	1,6
						Total:	648,7		64,6
débit d'exposition:	naturel	artificiel		cosmique	Insitu		R+S	déviation	R+S
en nSv/h	62,9	1,6		43,5	108,1		103,5	en %	-4,2

CERN					coordonnées	S	Altitude:	identification	durée :	début de la mesure: 13/10/2006
Choully	62 cps		beau		490035	121272	460	Detective	5664	11:50
Isotope	Energ (keV		Aire nette Counts	Aire nette Inc %	Netto- fläche N (cps)	egnc 30 ε=N/Ø %	facteur (*1 fa= Ø/A (Bq/kg)	Activité Ak=N/ε*fa (Bq/kg)	facteur (*1 fd=ODL/Ak (nSv/h*Bq/kg)	débit de dose ODL=Ak*fd (nSv/h)
Th-234	ì	92,60				6,43	1,30E-04	\ 1 8/	1 67	,
Ra-226		86,20	264	65,0	0,05	6,68	1,20E-04	58,1		
Pb-214	3	51,93	788	12,9	0,14	3,45	1,71E-03	23,6		
Bi-214 (U- 238)	6	509,32	762	10,1	0,13	1,94	2,76E-03	25,2	5,64E-01	14,2
Ac-228 (Th- 232)	9	11,07	406	13,7	0,07	1,29	2,07E-03	26,8	7,49E-01	20,1
Pb-212	2	38,63	1277	11,2	0,23	5,24	1,73E-03	24,9	·	
Bi-212	7	27,33	90	46,0	0,02	1,62	4,30E-04	22,8		
T1-208	5	83,19	514	12,2	0,09	2,03	1,76E-03	25,4		
K-40	1 4	60,83	2241	4,5	0,40	0,82	9,70E-04	498,1	5,12E-02	25,5
Be-7	4	77,60				2,50	5,41E-04		1,90E-02	
Autres Pic d'annihilation	5	11,00	325	22						
Ar-41	1	291,0								
Cs-137	6	61,66	465	12,1	0,08	1,78	5,20E-03	8,9	1,92E-01	1,7
							Total:	713,7		61,5
débit d'exposition:	naturel	artific	iel	cosmique	e Insitu			R+S	déviation	R+S
en nSv/h	59,8	1,7		44,1	105,5			102,6	en %	-2,8

CERN			coordonnée	s	Altitude:	identification	durée :	début de la mesure:
La Praille	68 cps	brumeux	493164	120635	414	Detective	4810	13/10/2006 09:37

Isotope	Energi (keV		Aire nette (Counts)	Aire nette Inc %	Netto- fläche N (cps)	ε=l	c 30 N/Ø %	facteur (*1 fa= Ø/A (Bq/kg)	Activité Ak=N/ε*fa (Bq/kg)	facteur (*1 fd=ODL/Ak nSv/h*Bq/kg	débit de dose ODL=Ak*fd (nSv/h)
Th-234		92,60	,				6,43	1,30E-04		•	Ź
Ra-226	1	186,20	239	52,0	0,0)5	6,68	1,20E-04	62,0		
Pb-214	3	351,93	693	14,4	0,1	4	3,45	1,71E-03	24,4		
Bi-214 (U-238)	6	609,32	575	12,0	0,1	2	1,94	2,76E-03	22,4	5,64E-01	12,6
Ac-228 (Th-232)	ç	911,07	251	19,0	0,0)5	1,29	2,07E-03	19,5	7,49E-01	14,6
Pb-212	2	238,63	765	16,0	0,1	.6	5,24	1,73E-03	17,5		
Bi-212	7	727,33	89	42,0	0,0)2	1,62	4,30E-04	26,6		
T1-208	5	583,19	388	17,0	0,0	08	2,03	1,76E-03	22,6		
K-40	1 4	460,83	1377	5,7	0,2	.9	0,82	9,70E-04	360,4	5,12E-02	18,5
Be-7	4	477,60					2,50	5,41E-04		1,90E-02	
Autres Pic d'annihilation Ar-41		511,00 291,00	217	33							
Cs-137	6	661,66	307	19,0	0,0	06	1,78	5,20E-03	6,9	1,92E-01	1,3
								Total:	562,3		47,0
débit d'exposition:	naturel a	artificiel		cosmique	Insitu		Total: 562,3			déviat	ion R+S
en nSv/h	45,7	1,3		43,3	90,3			95	,2	en %	6 5,4

7.5. Résultats des mesures différées dans le milieu terrestre

Mesures IRSN dans l'herbe 2005 et 2006

Prélèvement

N° Echantillon	Date de prélèvement	Nature	Lieu		Référence Point de Prélèvement	observation	surface prélevée (m2)
L3550	20/09/2005	HERBE	CERN: CROZET	CH DES CAILLOUX	PA3		3
L3553	20/09/2005	HERBE	CERN: CESSY	METEO France	PA5		2
L3556	20/09/2005	HERBE	CERN: VERSONNEX	sur le remblais	PA 6		1
L3559	21/09/2005	HERBE	CERN: FERNEX	Lycée international	PA 7		1,5
L3562	21/09/2005	HERBE	CERN: COLLEX- SUISSE		POINT 7		2
L3565	21/09/2005	HERBE	CERN: AU PUGINS	champ	BA4 (PT 9)		2
L3568	22/09/2005	HERBE	CERN: MAISONNEX SUISSE		PT 1		1

* Les résultats sont rendus à k=2

Site	14 C Bq/kg de C	+/-	3 H lié à la MO *	+/-	³ H lié à la MS	+/-	^{110m} Ag	⁷ Be	+/-	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs
PA3	239	13,0	2	1,4	1,7	1,2	<1,0	370	40	<0,4	<3,3	<0,5	<0,6
PA5	241	13,0	2,5	1,3	2,1	1,1	<0,9	328	33	<0,31	<2,9	<0,8	<0,6
PA 6	243	13,0	1,5	0,4	1,3	0,3	<0,9	108	19	<0,4	<4	<0,6	<0,6
PA 7	237	12,0	2,3	0,5	1,8	0,4	<1,7	320	50	<0,7	<6	<1,0	<1,1
POINT 7	243	13,0	2,7	0,4	2,3	0,3	<1,6	105	20	<0,8	<4	<0,7	<0,6
BA4 (PT 9)	242	13,0	2,5	0,7	2,1	0,5	<1,1	350	40	<0,22	<2,0	<0,5	<0,4
PT 1	242	13,0	4	1,1	3,5	0,9	<2,3	290	40	<0,6	<7	<0,9	<1,0

^{*} activité rapportée à la quantité d'H total de l'échantillon, mesure non accréditée

											fam. 232Th		fam. 238U
Site	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	Ac- 228	+/-	Pa-234
PA3	0,92	0,24	<0,5	300	24	<0,8	<0,5	<6	<3,3	<1,1	<2,8		<50
PA5	0,6	0,2	<0,5	680	60	<0,7	<0,6	<6	<4	<1,2	<3,0		<70
PA 6	<0,5		<0,6	800	70	<0,8	<0,9	<6	<6	<1,2	<2,9		<60
PA 7	<1,2		<0,9	1080	90	<1,3	<1,1	<12	<7	<2,2	<4		<160
POINT 7	<0,8		<0,7	670	60	<0,8	<0,7	<7	<5	<1,4	<3,1		<100
BA4 (PT 9)	<0,6		<0,29	540	50	<0,5	<0,5	<5	<2,5	<0,8	2,2	0,9	<90
PT 1	0,5	0,2	<0,7	750	70	<3,3	<0,8	<9	<6	<1,8	<5		<120

Prélèvement

N° Echantillon	Date de prélèvement	Nature	Lieu		Référence Point de Prélèvement	observation	surface prélevée (m2)
						prélèvements le plus souvent de qualité mauvaise ou moyenne	
L3698	21/03/2006	HERBE	CERN: CROZET	CH DES CAILLOUX	PA3	Point déplacé d'environ 10m par rapport à 2005, prélèvement de mauvaise qualité (voir photos)	2
L3702	21/09/2005	HERBE	CERN: FERNEX	Lycée international	PA 7		1
L3699	21/03/2006	HERBE	CERN: AU PUGINS	champ	BA4 (PT 9)		2
L3701	22/03/2006	HERBE	CERN: VERSONNEX	sur le remblais	PA 6		1
L3700	22/03/2006	HERBE	CERN: CESSY	METEO France	PA5	Point déplacé d'environ 100m par rapport à 2005 (voir photos)	1

* Les résultats sont rendus à k=2

Site	¹⁴ C Bq/kg de C	+/-	³ H lié à la MO *	/-	³ H lié à la MS	+/-	^{110m} A g	⁷ Be	+/-	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs
------	----------------------------------	-----	---------------------------------------	----	--	-----	----------------------------	-----------------	-----	------------------	------------------	------------------	-------------------

PA3	242	16,0	2,2	0,9	1,9	0,8	<2,2	450	50	<0,9	<2,6	<1,7	<1,7
PA 7	236	16,0	7,8	1	5,7	0,6	<2,0	360	40	<0,8	<2,0	<1,3	<1,4
BA4 (PT 9)	242	17,0	3,8	0,5	3,2	0,4	<2,3	550	50	<0,8	<2,1	<1,5	<1,5
PA 6	238	17,0	3,2	0,9	2,8	0,8	<1,9	530	50	<0,9	<2,5	<1,6	<1,6
PA5	233	16,0	6,0	1,8	5,3	1,5	<1,9	470	50	<0,8	<2,3	<1,7	<3,1

^{*} activité rapportée à la quantité d'H total de l'échantillon, mesure non accréditée

											fam. 232Th		fam. 238U
Site	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	Ac- 228	+/-	Pa-234
PA3	<2,3		<1,7	380	40	<1,6	<1,6	<16	<2,6	<4	<11		<270
PA 7	4,8	0,8	<1,4	370	40	<1,3	<1,2	<12	<5	<2,8	7,5	2,1	<190
BA4 (PT 9)	1,4	0,5	<1,4	219	23	<1,5	<1,3	<14	<2,3	<3,0	<9		<250
PA 6	<1,5		<1,6	370	40	<1,6	<1,4	<15	<2,5	<11	<10		<210
PA5	<1,3	_	<1,4	540	50	<1,4	<1,4	<14	<2,6	<3,2	<10	_	<240

Mesures Labo IRSN dans le sol

BA4

Prélèvement Activité Bq/kg sec

N° Echantillon	Date de prélèvement	Nature	Lieu	Référence Point de Prélèvement	Date de mesure	^{110m} Ag	⁷ Be	+/-	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-
L3566	21/09/05	sol: 00- 05	CERN: AU PUGINS	PT 9	03/01/06	<0,7	5	3,1	<0,4	<1,0	<0,4	<0,4	8,5	0,8	<0,6	450	40
L3567	21/09/05	sol: 05- 10	CERN: AU PUGINS	PT 9	03/01/06	<0,5	<8		<0,2	<0,7	<0,3	<0,3	8,7	0,8	<0,4	450	40

						_				Act	ivité Bq	/kg sec											
						fa	m. 2327	h								fa	am. 238	U					
Site	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	²²⁸ Ac	+/-	²²⁴ Ra	+/-	²¹² Pb	+/-	²¹² Bi	+/-	²⁰⁸ Tl	+/-	²³⁴ Pa	+/-	²²⁶ Ra	+/-	²¹⁴ Pb	+/-	²¹⁴ Bi	+/-
PT 9	<0,5	<0,5	<4	<1,0	<1,0	35	4	34	5	34,3	3	36	5	12,2	1,3	41	14	<70		27,6	2,6	28,1	3
PT 9	<0,5	<0,33	<3,0	<0,8	<0,7	35	4	40	4	36,9	3,2	34	5	12,1	1,3	28	11	<14		28,4	2,6	27,4	2,9

PA1

Ио	Date	Nature	Lieu	Référence Point de Prélèvement	Qualité	Date de mesure	^{110m} Ag	⁷ Be	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-
L3569	22/09/ 05	sol: 00-05	CERN: MAISONNEX SUISSE	PT 1	sec	12/01/ 06	<0,8	<11	<0,4	<1,0	<0,4	<0,5	4,5	0,5	<0,6	460	40
L3570	22/09/ 05	sol: 05-10	CERN: MAISONNEX SUISSE	PT 1	sec	12/01/ 06	<0,5	<8	<0,3	<0,8	<0,3	<0,3	4,3	0,5	<0,4	470	50

						fam. 232T										fan 238							
Site	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	²²⁸ Ac	+ \ -	²²⁴ Ra	+ / -	²¹² Pb	+ / -	²¹² Bi	+ / -	²⁰⁸ Tl	+/-	²³⁴ Pa	+/	²²⁶ Ra	+/	²¹⁴ Pb	+ / -	²¹⁴ Bi	+/
PT 1	<0,5	<0,4	<4	<1,1	<1,0	33	4	36	5	32,6	3	34	5	11,4	1,2	<70		<60		29,7	3	29,6	3
PT 1	<0,5	<0,4	<3	<0,8	<0,7	35	4	37	4	36,4	3	34	5	11,8	1,3	31	12	34	16	31,5	3	30,2	3

PA3

Ио	Date	Nature	Lieu	Référence Point de Prélèvement	Qualité	Date de mesure	^{110m} A g	⁷ Be	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/
L3551	20/09/05	sol: 00-05	CERN: CROZET	CH DES CAILLOUX	sec	12/01/06	<1,0	<15	<0,5	<1,1	<0,5	<0,5	34,1	2,8	<0,7	293	25
L3552	20/09/05	sol: 05-10	CERN: CROZET	CH DES CAILLOUX	sec	12/01/06	<0,6	<13	<0,4	<1,0	<0,3	<0,4	30,7	2,5	<0,7	287	24

						fam. 2	?32Th									far 238						
Site	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	²²⁸ AC	+/-	²²⁴ Ra	+ /	²¹² Pb	+/-	²¹² Bi	+ / -	²⁰⁸ Tl	+/-	²³⁴ Pa	+/	²²⁶ Ra	²¹⁴ Pb	+/	²¹⁴ Bi	+/-
PA3	<0,7	<0,5	<5	<1,3	<1,3	26,9	3,0	28	6	29,0	2,5	29	4	9,5	1,1	41	16	<130	69	7	67	7
PA3	<0,5	<0,4	<4	<1,1	<1,0	26,1	2,9	26	4	27,5	2,4	26	4	9,4	1,0	<60		<120	61	5	60	7

PA5

Ио	Date	Natur e	Lieu	Référence Point de Prélèvement	Qualité	Date de mesure	^{110m} Ag	⁷ Be	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/
	20/09/	sol:	CERN:	МЕТЕО		12/01/	<u> </u>										
L3554	05	00-05	CESSY	France	sec	06	<0,8	<12	<0,4	<1,0	<0,4	<0,5	19,9	1,7	<0,6	510	50
L3555	20/09/ 05	sol: 05-10	CERN: CESSY	METEO France	sec	12/01/ 06	<0,7	<13	<0,4	<1,8	<0,4	<0,5	21,3	1,8	<0,7	520	50

						fam 232T										fa: 238						
Site	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	²²⁸ Ac	+ / -	²²⁴ Ra	+/	²¹² Pb	+/	²¹² Bi	+/	²⁰⁸ Tl	+/-	²³⁴ Pa	+/	²²⁶ Ra	²¹⁴ Pb	+/	²¹⁴ Bi	+/
														_				_				
PA5	<0,5	<0,5	<5	<1,1	<1,0	43	5	42	5	42	4	44	6	14,8	1,6	32	15	<100	45	4	45	5
PA5	<0,6	<0,5	<5	<1,2	<1,1	42	5	42	5	44	4	46	6	15,5	1,6	<70		<17	46	4	45	5

PA6

Ио	Date	Nature	Lieu	Référence	Qualité	Date de mesure	^{110m} Ag	⁷ Be	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-
L3557	20/09 /05	sol: 00-05	CERN: VERSONNEX	PA 6	sec	12/01/06	<0,5	<9	<0,23	<0,8	<0,3	<0,3	5,9	0,6	<0,4	450	40
L3558	20/09 /05	sol: 05-10	CERN: VERSONNEX	PA 6	sec	12/01/06	<0,6	<11	<0,4	<0,9	<0,4	<0,5	6,2	0,6	<0,6	460	40

						fam 232										fam.	238U					
Site	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	²²⁸ Ac	+/ -	²²⁴ Ra	+/ -	²¹² Pb	+ / -	²¹² Bi	+ / -	²⁰⁸ Tl	+/-	²³⁴ Pa	+/-	²²⁶ Ra	²¹⁴ Pb	+ / -	²¹⁴ Bi	+/-
		Т	1	1	1	ı		T		1		T		T		1		T	ı			
PA6	<0,6	<0,4	<3	<1	<0,7	34	4	37	3	33	3	31	4	11,5	1,2	<60		<32	30	3	30	3
PA6	<0,5	<0,4	<4	<1	<1,0	34	4	35	5	34	3	36	5	11,9	1,3	27	13	<70	30	3	30	3

PA7 France

Prélèvement

Activité Bq/kg sec

N° Echantillon	Date	Nature	Lieu	Référence Point de Prélèvement	Qualité	Date de mesure	^{110m} A g	⁷ Be	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-
L3560	21/09 /05	sol: 00-05	CERN: FERNEX	PA 7	sec	12/01/0 6	<0,5	<23	<0,2	<0,8	<0,3	<0,3	13,9	1,2	<0,3	394	33
L3561	21/09 /05	sol: 05-10	CERN: FERNEX	PA 7	sec	12/01/0 6	<0,7	<10	<0,3	<1,8	<0,3	<0,4	13,2	1,1	<0,5	400	33

						fam. 232Th										fam. 238U							
Site	⁵⁴ Mn	²² Na	¹⁰⁶ Rh	¹²⁴ Sb	¹²⁵ Sb	²²⁸ Ac	+/-	²²⁴ Ra	+/-	²¹² Pb	+/-	²¹² Bi	+/-	²⁰⁸ Tl	+/-	²³⁴ Pa	+/-	²²⁶ Ra	+/-	²¹⁴ Pb	+/-	²¹⁴ Bi	+/-
PA7	<0,5	<0,4	<3,0	<0,8	<0,7	29,1	3,1	28,0	2,6	29,4	2,5	29	4	10,1	1,1	35	11	42	10	27,6	2,6	28,4	3,0

PA7 Suisse

Prélèvement Activité Bq/kg sec

N° Echantillon	Date de prélèvement	Nature	Lieu	Référence Point de Prélèvement	Date de mesure	^{110m} Ag	⁷ Be	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	+/-	¹⁵⁴ Eu	⁴⁰ K	+/-
L3563	21/09/2005	sol: 00- 05	CERN: COLLEX- SUISSE	POINT 7	03/01/2006	<0,5	<9	<0,6	<0,8	<0,4	<0,32	11,1	1	<0,7	490	50
L3564	21/09/2005	sol: 05- 10	CERN: COLLEX- SUISSE	POINT 7	03/01/2006	<0,8	<9	<0,31	<0,9	<0,31	<0,4	10,4	0,9	<0,6	460	40

Activité Bq/kg sec fam. 232Th fam. 238U ¹⁰⁶Rh ¹²⁴Sb ²²⁸Ac ²²⁴Ra ²¹⁴Pb Site ⁵⁴Mn ²²Na ¹²⁵Sb +/-²¹²Pb +/-²¹²Bi ²⁰⁸Tl ²³⁴Pa ²²⁶Ra +/-+/-²¹⁴Bi +/-+/-+/-<0,6 4 5 14 < 0,6 <4 <0,8 <0,8 42 5 42 42 4 38 14,1 1,5 <90 57 38 37 4 PA7 PA7 <0,5 <0,4 <3,3 <0,9 <0,9 40 5 38 4 38,4 3,1 40 5 14 1,5 36 12 <13 34,7 3,2 35 4

Mesures en laboratoire OFSP

RAPPORT D'ESSAI

Rapport d'essai Nr. : 48

Mandataire : Section Surveillance de la Radioactivité (SUeR), OFSP

1700 Fribourg

Mandat : Détermination de l'activité des radionucléides présents dans des échantillons de sol et

d'herbe prélevés au voisinage du CERN dans le cadre du programme « point zéro

LHC ».

Résumé : Les activités des divers radionucléides présents dans les échantillons ont été

déterminées par spectrométrie gamma.

Les mesures ont été effectuées dans les laboratoires de Fribourg et de Liebefeld. Les

échantillons mesurés dans le laboratoire de Liebefeld portent la mention (LL).

Fribourg, le 21 août 2006

Visé: Auteur:

Laboratoire d'essai pour la radioactivité de l'environnement La responsable technique	Laboratoire d'essai pour la radioactivité de l'environnement
Dr. S. Estier	Dr. S. Estier

Annexe: 1 fiche de résultats

Informations sur le calcul de l'incertitude

Distribution: C. Murith, Division Radioprotection, OFSP, 3003 Bern

- SUER, ch. du Musée 3, 1700 Fribourg

Objet d'analyse

Echantillons d'herbe et de sol, prélevés au voisinage du CERN.

Entrée du mandat

09.2005

Identification des échantillons

La codification est contenue dans les tableaux de résultats (No. SMIL).

Description détaillée du mandat

Mesure par spectrométrie gamma de l'activité des divers radionucléides présents dans des échantillons d'herbe et de terre prélevés au voisinage du CERN dans le cadre du programme « point zéro LHC ».

Calcul de l'activité spécifique (matière sèche) ou de la limite de détection pour les radionucléides K-40, Be-7, Cs-137, reportée à la date de prélèvement.

Examens réalisés

Détermination de l'activité des radionucléides par spectrométrie gamma :

Préparation: Selon les prescriptions de travail pour la spectrométrie gamma :

- terres et herbes : lyophilisées, broyées

Mesure: Selon les prescriptions de travail pour la spectrométrie gamma:

- Avec détecteur HPGe

- Domaine d'énergie: 40 - 2000 keV

Evaluation des spectres : Selon les prescriptions de travail pour la spectrométrie gamma:

- Avec le logiciel Inter-Winner 5.05 et 6.0

- Sans correction de la densité - avec soustraction du bruit de fond

- Sans correction des pertes par sommation

- Date de référence pour le calcul de l'activité : date du prélèvement

Examens réalisés par

S. Estier et M. Jungck (mesures et évaluations), M. Müller, A. Gurtner (mesures).

Date d'examen

01.04.06 - 15.08.06

Lieu d'examen

Laboratoires de Fribourg et Liebefeld

Résultats d'examen

Voir fiche de résultats en annexe.

Remarques

Une description détaillée de chaque échantillon est introduite dans la base de données du laboratoire par le laboratoire d'essai.

Incertitude statistique sur les valeurs mesurées : +/- 2 Sigma Niveau de confiance pour la limite de détection : 95 %

Fiche de résultats

1. Echantillons d'herbe prélevés au voisinage du CERN (programme point zéro LHC, 2006)

(Activités en Ba/ka poids sec)

					Poids	Poids		⁷ Be		⁴⁰ K		¹³⁷ C:	s
Lieu	SMIL	Date	Type	Préparation	frais	sec	f/s	[Bq/kg]		[Bq/kg]		[Bq/kg]	
					[g]	[g]		m.s.	%	m.s.	%	m.s.	%
CERN, Collex (PA7 CH)				lyophilisée									
(LL)	7432	22.03.2006	herbe		132	52	2.52	700	21	390	23	< 4	
CERN, Maisonnex (PA1)				lyophilisée									
(LL)	7433	23.03.2006	herbe		303	67	4.53	910	22	390	26	< 4	
CERN, PA6 (LL)	7434	22.03.2006	herbe	lyophilisée	149	44	3.39	780	19	570	19	2	91

2. Echantillons de terre prélevés au voisinage du CERN (programme point zéro LHC, 2006)

(Activités en Bq/kg tamisé 2mm)

			Poids	Poids	Poids		⁷ Be		⁴⁰ K		¹³⁷ Cs		²¹⁴ Bi		²²⁸ Ac	
Lieu	SMIL	Date	frais	sec	tam.	f/t	[Bq/kg				[Bq/kg				[Bq/kg	
			[g]	[g]	[g]		t.]	%	[Bq/kg t.]	%	t.]	%	[Bq/kg t.]	%	t]	%
CERN, Rue Booster	7599	22.03.2006	674	666	400	1.68	< 20		470	14	6.3	21	22	17	31	19
CERN, Maisonnex																
(PA1)	7598	23.03.2006	716	581	404	1.77	< 30		490	15	21	17	22	19	32	22
CERN, Collex																
(PA7-CH)	7600	22.03.2006	676	642	394	1.72	< 30		500	14	10	20	26	17	37	19
CERN, PA6	7597	22.03.2006	1180	1142	1008	1.17	< 20		450	14	6.9	20	24	16	33	18

Informations sur le calcul de l'incertitude

Spectrométrie gamma et mesure du tritium

L'incertitude totale indiquée (Intervalle de confiance de 95 %) se compose des contributions suivantes, qui sont considérées comme indépendantes :

- 1) **Incertitude statistique (taux de comptage)** : telle qu'elle est calculée par le programme d'évaluation (intervalle de confiance de 95 %).
- 2) Les autres contributions à l'incertitude de mesure considérées sont les incertitudes sur :
 - la préparation de l'échantillon, la pesée, la géométrie de mesure,
 - les données nucléaires utilisées,
 - les standards certifiés utilisés pour l'étalonnage,
 - la correction de décroissance radioactive,
 - le programme de calcul utilisé (déconvolution des pics, calcul des aires nettes),
 - les corrections d'auto-absorption.

L'incertitude systématique due à ces différentes composantes est estimée à 10 %.

STS 314

RAPPORT D'ESSAI

Rapport d'essai Nr. : 36

Mandataire : Section Surveillance de la Radioactivité (SUeR), OFSP

1700 Fribourg

Mandat : Détermination de l'activité des radionucléides présents dans des échantillons de sol et

d'herbe prélevés au voisinage du CERN dans le cadre du programme « point zéro

LHC ».

Résumé : Les activités des divers radionucléides présents dans les échantillons ont été

déterminées par spectrométrie gamma.

Les mesures ont été effectuées dans les laboratoires de Fribourg et de Liebefeld. Les

échantillons mesurés dans le laboratoire de Liebefeld portent la mention (LL).

Fribourg, le 19 janvier 2006

Visé: Auteur:

Dr. S. Estier	Dr. S. Estier
La responsable technique	
Laboratoire d'essai pour la radioactivité de l'environnement	Laboratoire d'essai pour la radioactivité de l'environnement

Annexe: 1 fiche de résultats

Informations sur le calcul de l'incertitude

Distribution: C. Murith, Division Radioprotection, OFSP, 3003 Bern

- SUER, ch. du Musée 3, 1700 Fribourg

Rapport d'essai Nr.: 36

Objet d'analyse

Echantillons d'herbe et de sol, prélevés au voisinage du CERN.

Entrée du mandat

09.2005

Identification des échantillons

La codification est contenue dans les tableaux de résultats (No. SMIL).

Description détaillée du mandat

Mesure par spectrométrie gamma de l'activité des divers radionucléides présents dans des échantillons d'herbe et de terre prélevés au voisinage du CERN dans le cadre du programme « point zéro LHC ».

Calcul de l'activité spécifique (matière sèche) ou de la limite de détection pour les radionucléides K-40, Be-7, Cs-137 reportée à la date de prélèvement.

Examens réalisés

Détermination de l'activité des radionucléides par spectrométrie gamma :

Préparation: Selon les prescriptions de travail pour la spectrométrie gamma :

- terres et herbes : lyophilisées, broyées

Mesure: Selon les prescriptions de travail pour la spectrométrie gamma:

- Avec détecteur HPGe

- Domaine d'énergie: 40 - 2000 keV

Evaluation des spectres : Selon les prescriptions de travail pour la spectrométrie gamma:

- Avec le logiciel Inter-Winner 5.05 et 6.0

- Sans correction de la densité - avec soustraction du bruit de fond

- Sans correction des pertes par sommation

- Date de référence pour le calcul de l'activité : date du prélèvement

Examens réalisés par

S. Estier et M. Jungck (mesures et évaluations), M. Müller, A. Gurtner (mesures).

Date d'examen

10.10.05 - 10.01.06

Lieu d'examen

Laboratoires de Fribourg et Liebefeld

Résultats d'examen

Voir fiche de résultats en annexe.

Remarques

Une description détaillée de chaque échantillon est introduite dans la base de données du laboratoire par le laboratoire d'essai.

Incertitude statistique sur les valeurs mesurées : +/- 2 Sigma Niveau de confiance pour la limite de détection : 95 %

Fiche de résultats

1. Echantillons d'herbe prélevés au voisinage du CERN (programme point zéro LHC, 2005)

(Activités en Ba/kg poids sec)

					Poids	Poids	,	⁷ Be		⁴⁰ K		¹³⁷ C:	s
Lieu	SMIL	Date	Type	Préparation	frais	sec	f/s	[Bq/kg]		[Bq/kg]		[Bq/kg]	
					[g]	[g]		m.s.	%	m.s.	%	m.s.	%
CERN, Rue Booster (LL)	7072	07.10.2005	herbe	lyophilisée	139	39.7	3.50	200	22	610	20	< 3	
CERN, Choully (LL)	7073	06.10.2005	herbe	lyophilisée	252	74.5	3.38	160	23	660	18	< 3	
CERN, Maisonnex (PA1)	7076	07.10.2005	herbe	lyophilisée	499	113.3	4.40	120	30	730	15	< 1.5	
CERN, La Praille	7077	06.10.2005	herbe	lyophilisée	177	59.9	2.95	290	35	670	20	< 5	
CERN, Ferney-Voltaire (LL)	7075	07.10.2005	herbe	lyophilisée	95	19	5.05	260	21	810	18	2.6	90
CERN, Collex (LL) (PA7-CH)	7074	07.10.2005	herbe	lyophilisée	276	106	2.60	280	18	490	19	< 3	

2. Echantillons de terre prélevés au voisinage du CERN (programme point zéro LHC, 2005)

(Activités en Bq/kg sec, tamisé 2mm)

(Heathless of Baying see) tarring																
			Poids	Poids	Poids		⁷ Be		⁴⁰ K		¹³⁷ Cs		²¹⁴ Bi		²²⁸ Ac	
Lieu	SMIL	Date	frais	sec	tam.	f/t	[Bq/kg				[Bq/kg				[Bq/kg	
			[g]	[g]	[g]		t.]	%	[Bq/kg t.]	%	t.]	%	[Bq/kg t.]	%	t]	%
CERN, Rue Booster	7066	07.10.2005	746	585	419	1.78	< 8		470	15	7.5	21	25	18	32	21
CERN, Choully	7067	06.10.2005	884	700	470	1.88	< 13		440	15	14	18	21	19	29	23
CERN, Maisonnex																
(PA1)	7068	07.10.2005	727	577	398	1.83	< 8		490	14	15	16	29	16	29	20
CERN, La Praille	7069	06.10.2005	960	794	644	1.49	4.6	60	430	13	13	15	22	15	32	16
CERN, Ferney-																
Voltaire (PA7-F)	7070	07.10.2005	1136	865	643	1.77	< 9		370	15	13	17	21	17	23	22
CERN, Collex																
(PA7-CH)	7071	07.10.2005	938	721	452	2.07	< 10		500	15	11	20	29	17	39	21

Informations sur le calcul de l'incertitude

Spectrométrie gamma et mesure du tritium

L'incertitude totale indiquée (Intervalle de confiance de 95 %) se compose des contributions suivantes, qui sont considérées comme indépendantes :

- 3) Incertitude statistique (taux de comptage) : telle qu'elle est calculée par le programme d'évaluation (intervalle de confiance de 95 %).
 - Les autres contributions à l'incertitude de mesure considérées sont les incertitudes sur :
 - la préparation de l'échantillon, la pesée, la géométrie de mesure,
 - les données nucléaires utilisées,
 - les standards certifiés utilisés pour l'étalonnage,
 - la correction de décroissance radioactive,
 - le programme de calcul utilisé (déconvolution des pics, calcul des aires nettes),
 - les corrections d'auto-absorption.

L'incertitude systématique due à ces différentes composantes est estimée à 10 %.

7.6. Synthèse des notions de base

Radioactivité et activité

En 1896 Henri Becquerel découvre le phénomène des rayonnements caractérisé par "radioactivité" en 1898 par Pierre et Marie Curie, grâce à leurs études sur le thorium et le radium. La radioactivité est la propriété qu'ont certains atomes instables (naturels ou artificiels), à tendre vers une position stable, en libérant spontanément une partie de leur masse, sous forme de particules (alpha, bêta) et de leur énergie sous forme de rayonnement électromagnétique (gamma). Ces atomes instables sont appelés radioactifs car lors de leur transformation spontanée (désintégration) ils émettent des RI chargés (rayons alpha ou bêta) ou non chargés (photons) et donnent naissance à un atome fils qui peut être soit stable soit radioactif. L'activité d'une source radioactive est définie par le nombre de noyaux qui se transforment spontanément par unité de temps (désintégration par seconde).

L'unité d'activité est le becquerel, **1 becquerel (Bq)** correspond à une désintégration par seconde. Antérieurement au becquerel on utilisait le curie (Ci) défini comme l'activité d'une masse de 1g de radium 226. Une source radioactive de 1 curie est le siège de 37 milliards de désintégrations par seconde (1 Ci = 37.10⁹ Bq). La radioactivité contenue dans un radioélément n'a aucun effet biologique si les particules ou RI émis n'atteignent pas une cible, et notamment un tissu biologique, pour se transformer en énergie absorbée, c'est-à-dire en dose absorbée.

Doses et effets

Les RI interagissent avec les éléments du milieu dans lequel ils pénètrent. Il en résulte des transferts d'énergie mesurés par la dose absorbée (D). L'unité de **dose absorbée** est le gray (Gy).

1 gray (Gy) correspond au transfert à la matière d'une énergie de 1 joule par kilogramme. Antérieurement au gray on utilisait le rad (1 rad = 10⁻² Gy). De la notion de dose absorbée découle celle de débit de dose absorbée introduite pour tenir compte du facteur temps. En effet de même qu'il est utile de savoir si une même quantité de médicament a été administrée en une seule fois ou de manière fractionnée, de même il y a lieu de prendre en considération le temps d'exposition d'une cible à un rayonnement donné. La dose et le débit de dose absorbés se mesurent avec une très grande précision grâce à différents types de dosimètres. Cette grandeur est déterminante pour apprécier une irradiation aiguë (fortes doses à forts débits, plusieurs gray en quelques heures) et informer sur son traitement. Ces effets tissulaires qui sont la conséquence de la mort cellulaire apparaissent dans l'ensemble de la population exposée. Leur sévérité augmente avec la dose et leur seuil d'apparition dépend de l'individu et de l'organe touché.

Pour mieux apprécier l'effet biologique d'une dose (en gray), la notion de **dose équivalente** a été introduite pour les besoins de la radioprotection. Elle repose sur le fait qu'à dose absorbée égale les effets biologiques observés (statistiques ou aléatoires) varient selon la nature du rayonnement. La dose équivalente est une grandeur calculée définit par la relation suivante: $\mathbf{H_T} = \mathbf{D.W_R}$ où D est la dose mesurée en gray et W_R un facteur de pondération qui tient compte de la nature du rayonnement. Il est convenu d'associer aux rayonnements X, γ et β la valeur $W_R = 1$ et aux rayonnements α la valeur α

L'unité de dose équivalente est le **sievert (Sv)**, antérieurement le rem, 1 rem valant 10^{-2} Sv. Pour refléter le détriment (dommage) de l'ensemble des effets stochastiques (aléatoires) sur le corps entier, on introduit la notion de **dose efficace**: cette dernière représente la somme des doses équivalentes au niveau de tous les organes ou tissus, après pondération par un facteur W_T tenant compte de la radiosensibilité propre du tissu ou de l'organe considéré. $E = \Sigma H_T.W_T$.

Risque radiologique

Les effets des rayonnements ionisants sur l'organisme sont très variables selon la dose reçue, le temps et le mode d'exposition, et la nature du radioélément impliqué. Les voies d'atteintes sont l'irradiation externe et la contamination. Lorsqu'il se trouve sur la trajectoire des rayonnements, l'homme est irradié; il est contaminé s'il touche, respire ou avale une substance radioactive.

Les rayonnements alpha, bêta, gamma et X perturbent l'organisation de la matière vivante. Les atomes placés sur leurs trajectoires perdent un ou plusieurs électrons. Ces atomes se transforment alors en « ions » qui, chargés électriquement, vont à leur tour perturber l'organisation des molécules ou des cellules dont ils sont les constituants. La connaissance des effets provoqués par la radioactivité vient de l'analyse de cas réels d'irradiation sur des personnes accidentellement exposées ou médicalement traitées, d'enquêtes épidémiologiques sur des populations exposées (survivants d'Hiroshima-Nagasaki pour l'irradiation externe, riverains de la Techa river pour la contamination interne, cohortes de Tchernobyl, travailleurs du nucléaire, médecins et patients...) et d'études expérimentales. Une échelle de risques liés à la radioexposition a ainsi pu être élaborée.

Les effets « obligatoires » **tissulaires** sont liés à la mort cellulaire. Leurs caractéristiques sont :

- Effets précoces ou à moyen terme (qques heures à qques mois pour les plus lents)
- Effets à seuil (seuls les sujets ayant reçu une dose suffisante présenteront la maladie)
- A caractère obligatoire, ou non stochastique, ou déterministe (tous les sujets ayant reçu une dose suffisante développeront la maladie)

- Généralement réversible
- De gravité proportionnelle à la dose

Observables seulement en cas d'exposition à de fortes doses et débits de dose de rayonnements et à partir d'un seuil (0.2 Sv), ces effets varient suivant la dose reçue, depuis la modification passagère de la formule sanguine sans signe clinique (~ 0.3 sievert) jusqu'à la dose mortelle au-delà de toute ressource thérapeutique (> 15 Sv).

Les effets aléatoires ou **stochastiques** liés à la transformation cellulaire due principalement à l'interaction des rayonnements sur les molécules d'ADN peuvent entraîner l'apparition d'effets pathologiques différés (cancers, leucémies, altérations génétiques). Leurs principales caractéristiques sont :

- Effets tardifs (plusieurs années ou dizaines d'années)
- Sans seuil caractérisé (la maladie peut théoriquement apparaître quelle que soit la dose)
- A caractère aléatoire, ou stochastique (la maladie survient chez un certain nombre de sujets exposés, mais pas chez tous – radiosensibilité- et certains même parmi les plus exposés peuvent ne pas être malades alors que des cas peuvent apparaître chez les moins exposés)
- Le plus souvent irréversibles spontanément
- De gravité indépendante de la dose, mais de fréquence d'apparition dans la population exposée proportionnelle à la dose
- Non caractéristiques (rien ne les différencient des maladies naturelles équivalentes)

Ces effets aléatoires ont incité les instances institutionnelles de radioprotection, en application du principe de précaution, à fixer des niveaux limites d'exposition à la **radioactivité artificielle** :

- 1 mSv/an an pour le public
- 20 mSv/an pour les travailleurs (150 mSv/an pour le cristallin, 500 mSv/an pour la peau et les extrémités)

Ces limites sont respectivement 1000 et 50 fois inférieures aux doses entraînant les premiers signes observables de pathologie précoce. L'estimation du risque ajouté pour les faibles doses est de **5% par sievert**.

Autres grandeurs et unités

La **période radioactive** (T), ou demi-vie, est le temps nécessaire pour que la moitié des atomes radioactifs initialement présents se soient désintégrés $[N(t)] = N_0 2^{-t/T}$.

Ainsi après 10 périodes l'activité est divisée par $2^{10} = 1024$.

La **période biologique** (T_b) d'un élément est égale au temps nécessaire pour que la moitié de la masse présente dans l'organisme soit éliminée par les voies biologiques naturelles.

La **période effective** (T_{eff}) est la résultante des périodes physiques (ou radioactive) et biologique. Elle est toujours plus courte que la plus courte des deux autres [$T_{eff} = T.T_b/(T + T_b)$]. Par exemple la période physique de l'iode 131 est de 8.04 jours, sa période biologique est de 138 jours et sa période effective de 7.06 jours. Pour le césium 137, la période effective est inférieure à 70 jours alors que sa période physique est de 30 ans.

L'efficacité biologique d'une irradiation varie selon le débit de dose, et est d'autant plus petite que le débit de dose est faible. Ainsi 5 Gy de rayons X, en quelques heures, sur le corps entier, entraînent le décès en moyenne d'un homme sur deux en l'absence de traitement (c'est la dose létale 50 ou DL 50), alors que cette même dose administrée en quelques mois n'entraîne pas de manifestation clinique précoce, cependant il existe à long terme un risque d'effet stochastique.

En cas d'absorption, le radionucléide irradie son ou ses organes cibles pendant un temps qui dépend des périodes physique et biologique. La **dose engagée** est égale à la dose totale en sievert que recevra le sujet contaminé durant toute sa vie. En pratique la réglementation prend en compte le cumul sur 50 ans.

Radioactivité et Environnement

L'exposition de la population due à la radioactivité de l'environnement est caractérisée par les sources d'origine naturelle (croûte terrestre et rayons cosmiques) et artificielles (essais nucléaires, Tchernobyl, rejets d'installations locales). Il existe deux types d'exposition :

- l'exposition externe quand la source est à distance de l'organisme
- L'exposition interne quand la source peut contaminé le revêtement cutané ou être inhalée ou ingérée dans le corps

L'exposition dépend de la nature de l'émission radioactive :

- pour la particule chargée, l'interaction avec la matière est obligatoire et la particule a un trajet limité, au maximum dans l'air, de l'ordre du centimètre pour des émissions α, et de quelques centimètre au mètre pour des émissions β. Il est donc facile de limiter l'exposition externe à ces sources par des obstacles de faible épaisseur ou par la distance. Ce type de rayonnement par contre délivre toute son énergie sur une très faible distance, et au contact de l'organisme lors des contaminations, les énergies délivrées peuvent être conséquentes.
- Pour les particules neutres ou les photons, l'interaction est aléatoire, non obligatoire, et de ce fait ces rayonnements peuvent aller très loin.
 Il est difficile de limiter l'exposition, même avec des écrans adaptés; par contre pour des sources ponctuelles l'exposition diminue comme le carré de la distance. Ces rayonnements posent les problèmes de l'exposition externe.

Sources d'origine naturelle

La radioactivité naturelle provient de notre planète et des rayons cosmiques. Parmi les 340 atomes qui existent dans la nature, 70 ont des noyaux instables radioactifs (radionucléides). Il ne reste qu'une vingtaine de ces radionucléides « primordiaux », ceux de période très courte par rapport à l'âge de la terre ayant disparu. Actuellement les principaux radionucléides sont le potassium 40 et ceux issus des filiations successives des 3 familles radioactives de l'uranium 238, du thorium 232 et de l'uranium 235. Ces éléments radioactifs se retrouvent dans le sol, dans l'eau, dans l'air, dans les organismes vivant dont l'homme.

- La **radioactivité du sol** qui varie selon la géologie, 5 à 20 fois plus élevée dans les massifs granitiques que sur des terrains sédimentaires, est source d'une exposition externe et de contamination interne par ingestion des aliments produits sur ces sols.
- La radioactivité des eaux, à l'origine d'une exposition par contamination interne, dépend plus du caractère chimique que de la géologie des terrains qu'elles drainent; les eaux minérales sont plus radioactives que les eaux de surface, alors que certaines eaux souterraines sont riches en gaz radon dissous.
- La radioactivité de l'air, source de contamination par inhalation, est essentiellement due au radon 222, lui-même issu de l'uranium 238; cette composante la plus importante de l'exposition naturelle est très variable. Elle dépend de la richesse du sol en uranium 238, de la porosité du sol, de l'habitat qui concentre par confinement la diffusion du gaz radon, des conditions climatiques et du mode de vie qui en résulte.
- La **radioactivité du corps humain**, de l'ordre de 120 Bq/kq (8400 Bq pour une personne de 70 kg) est due à une contamination par ingestion des radionucléides primordiaux (le potassium 40 essentiellement) ou cosmogéniques (essentiellement le carbone 14) transférés dans la chaîne alimentaire. A eux deux ces radionucléides qui sous contrôle homéostatique restent très stables sont prépondérants (86%) dans la radioactivité de l'organisme.
- Les rayons cosmiques ont 2 composantes, la première est due aux ions très énergétiques en provenance des galaxies, noyaux d'hydrogène (protons), d'hélium (particules alpha), quelques électrons... peu de noyaux lourds. L'autre composante vient du soleil; le « vent solaire » est constitué surtout de protons, il est variable en fonction des éruptions solaires. L'interaction des rayonnements cosmiques avec le champ magnétique terrestre forme la magnétosphère qui protège de façon plus ou moins importante des rayons cosmiques selon les altitudes des ceintures de « Van Allen ». Le rayonnement cosmique « primaire » résiduel interagit avec l'atmosphère et donne un rayonnement cosmique « secondaire ». Il est constitué de photons, de neutrons mais aussi de radionucléides « cosmogéniques » formés lors des interactions avec l'atmosphère comme le carbone 14, le tritium et le béryllium 7... La magnétosphère d'abord puis l'atmosphère ensuite sont de bonnes protections puisque seulement 0.05% du rayonnement cosmique arrive

au niveau de la mer, où il atteint ~ 0.3 mSv. On comprend ainsi que l'importance du rayonnement cosmique augmente avec l'altitude (il double tous les 1500 m) et qu'il soit une limite très importante pour l'homme lors de voyages interplanétaires. L'exposition globale à la radioactivité naturelle entraîne en moyenne 3 mSv qui se répartissent comme suit : terrestre 0.4 + cosmique 0.3 + radon 1.6 + corps humain 0.4.

Sources d'exposition naturelle renforcée

De multiples circonstances conduisent à des expositions à la radioactivité naturelle artificiellement augmentées et à l'origine de doses efficaces parfois relativement importantes :

- par le confinement du **radon dans les habitats**: l'utilisation de certains matériaux de construction émettant du radon, des constructions mal isolées de sols uranifères, des habitats trop confinés peuvent conduire à des expositions conséquentes réglementées par l'établissement d'un seuil d'activité volumique de radon dans les habitations (assainissement obligatoire au-dessus de 1000 Bq/m³ soit 20 mSv/an en Suisse et limite pour les nouvelles constructions et les rénovations 400 Bq/m³). Selon les dernières études épidémiologiques, à partir de 100 Bq/m³ on peut estimer l'excès de cancer du poumon à ~10% par 100 Bq/m³. La question du radon se pose également su les places de travail où la limite est fixée à 3000 Bq/m³.
- par l'altitude: les séjours en altitude se traduisent par des suppléments d'exposition, par exemple de l'ordre de 0.02 mSv pour 15 jours à 1500 m; les voyages aériens conduisent les passagers et le personnel navigant à des expositions aux rayonnements cosmiques qui pour des long-courriers entre 9000 et 11000 mètres entraînent des doses de 0.002 mSv à 0.010 mSv/h selon la latitude, soit par exemple 0.5 mSv pour 10 allers et retours Paris/New-York; l'exposition des spationautes lors d'un voyage vers Mars entraînerait des doses de l'ordre de 2000 mSv!
- par l'épandage d'engrais : certains **engrais** obtenus à partir de minerais phosphatés ont, en plus du potassium 40, des taux élevés de radionucléides de la famille de l'uranium 238.
- dans les **mines**, notamment d'uranium, les concentrations élevées de radon sont indéniablement à l'origine d'un excès de cancers du poumon chez les mineurs.
- lors d'applications industrielles (concentration de radium sur des filtres) ou médicales comme les cures thermales par les eaux chargées en minéraux radioactifs et surtout riches en gaz radon dissous peuvent entraîner des expositions ponctuellement importantes.

Sources d'origine artificielles

Les origines de la dispersion des radionucléides artificiellement créés depuis 1934 (Frédéric et Irène Joliot Curie) sont multiples :

- les **essais nucléaires atmosphériques** des années 60 ont produits dans la stratosphère des radionucléides qui restent détectables comme traces de césium 137 (T = 30 ans), de strontium 90 (T = 28 ans), de plutonium 239/240 (T = 24000 ans) et d'autres radionucléides déjà présents dans l'atmosphère, carbone 14 (T = 5730 ans) et tritium (12.3 ans). La dose moyenne cumulée pour la population suisse a été estimée à ~ 1.2 mSv.
- Le nuage de Tchernobyl a été responsable en 1986 de dépôts d'iode 131, de césium 134 (T = 2.2 ans) et de césium 137. La dose moyenne cumulée pour la population suisse a été estimé à ~ 0.2 mSv et jusqu'à 10 fois plus pour les groupes critiques n'ayant pas observé les recommandations. Pour les doses à la thyroïde, il était important de connaître les doses maximales délivrées en fonction des activités mesurées dans l'alimentation (lait) et de l'âge. Dans les conditions les plus défavorables elles ont été de l'ordre de 30 mSv chez les enfants de moins de 2 ans (10 fois moins chez les adultes). Pour appréciation la dose équivalente délivrée à la thyroïde lors d'une scintigraphie au technétium est de l'ordre de 15 à 20 mSv. Il n'a jamais été observé d'excès de cancer de la thyroïde, même chez les enfants, pour des doses à la thyroïde inférieures à 100 mSv et pratiquement à 1000 mSv chez les adultes.
- Les entreprises de l'industrie (horlogerie) et de la recherche ont mis en évidence quelques **sites pollués** après cessation d'activité
- Les rejets liquides et atmosphériques des **centrales nucléaires** dont les traces n'ont jamais excédé en Suisse la limite de dose liée à la source de 0.3 mSv/an
- Les héritages radioactifs (paratonnerres avec radium 226 ou américium 241) et les sources « orphelines » issues de la médecine et de l'industrie (radium 226 et tritium horlogers). Leur gestion correcte passe par des actions de ramassage et des contrôles aux centres de récupération de ferraille, aux décharges et aux stations d'incinération.

Radioactivité et chaîne alimentaire

La radioécologie permet de suivre le cheminement des produits radioactifs de notre environnement à travers les écosystèmes décomposés en une série de compartiment jusqu'à l'homme. Le facteur de transfert, $\mathbf{F_t}$, radioactivité d'un kg d'aliment/radioactivité d'un kg de terre ou d'eau, dépend de la solubilité ou de la biotransférabilité du radioélément. En général pour le transfert sol/plantes, $\mathbf{F_t}$ est le plus souvent très inférieur à 1; en milieu aquatique le transfert peut être beaucoup plus important, de l'ordre de 100 pour les poissons et de 1000 pour les crustacés. Certaines espèces fixent préférentiellement les radionucléides, on parle de bio indicateurs radioécologiques. Ils permettent par concentration de mettre en évidence des pollutions qui sinon ne pourraient pas être détectées. Il s'agit en particulier des lichens, mousses, thym, champignons, zooplancton, mollusques...

La radioactivité retrouvée dans la chaîne alimentaire a pour principale origine les radionucléides naturels primordiaux. Le potassium 40, 100 Bq/jour en moyenne (3 fois plus pour les végétariens), les descendants des familles de l'uranium 238 et du thorium 232 (radium 226, plomb 210, polonium 210) et les radionucléides d'origine cosmogéniques comme le carbone 14 et le tritium.

La radioactivité d'origine artificielle de la chaîne alimentaire est principalement due au strontium 90, césium 137 et carbone 14 des retombées des essais nucléaires aériens, au césium 137 de Tchernobyl ainsi qu'à des fractions de becquerels dus aux rejets des activités civiles industrielles ou médicales. La radioactivité naturelle de notre organisme reste stable, celle qui pourrait se cumuler serait due aux radionucléides artificiels tels que le césium dans les muscles, l'iode dans la thyroïde, le strontium dans les os...

Pour savoir si un aliment qui présente une contamination radioactive peut être ou non consommé, il faut se référer non aux limites de commercialisation (Codex Alimentarius) exprimées en Bq/kg ou en Bq/l, mais aux Limites Annuelles d'Incorporation (LAI) par ingestion et par inhalation telles qu'elles sont précisées dans la directive Euratom 84-467 du 3.9.1984.