

Kommission für Strahlenschutz und Überwachung der Radioaktivität

Commission fédérale de la protection contre les radiations et de surveillance de la radioactivité

Seminar vom 17. Januar 2001 Séminaire du 17 janvier 2001

Sammlung der Referate Recueil des exposés

Bern, Februar 2001

Bezugsadresse: Kommission für Strahlenschutz und Überwachung der Radioaktivität (KSR) Sekretariat Bundesamt für Gesundheit Postfach 3003 Bern

Verteiler:

Mitglieder der KSR Experten der KSR EDI BAG BFE SUVA KOMAC KUeR KSA NAZ/GS VBS PSI IRA UVEK

INHALTSVERZEICHNIS

- 1. Vorwort
- 2. Tagesprogramm
- 3. Moderatoren- und Referentenliste
- 4. Personendosimetrie in Europa
- 4.1. Harmonization and Dosimetric Quality Assurance of Individual Monitoring of External Radiation Dr. David Bartlett (NRPB)
- 4.2. Implementation of EU Requirements for the Radiation Protection of Aircraft Crew for Cosmic Radiation Dr. David Bartlett (NRPB)
- 4.3. Stand der Personendosimetrie in der Schweiz im Vergleich zur Europäischen Union Christian Wernli, Dipl. Physiker ETH

Prof. Jean-François Valley

1. Vorwort / Avant-propos

Cette manifestation, 8^{ème} séminaire de la Commission fédérale de radioprotection (qui a préparé le séminaire) et 1^{er} séminaire de la Commission fédérale de protection contre les radiations et de surveillance de la radioactivité (qui a patronné le séminaire), a eu lieu le 17 janvier 2001 à Berne. Elle a réuni une cinquantaine de personnes : membres de la commission, experts, collaborateurs de services et instituts en charge de la radioprotection.

Le but du séminaire est d'informer les personnes en charge de la radioprotection en Suisse sur des thèmes actuels. Le séminaire est aussi un lieu d'échange entre les différents partenaires : représentants des offices de surveillance, de l'industrie, de la recherche. Cette plate-forme doit permettre d'une part un approfondissement des connaissances et d'autre part une amélioration de la convergence dans l'application des principes de base de la radioprotection.

Le séminaire a été consacré en première partie à la présentation de la dosimétrie individuelle en Europe. Le premier exposé a été présenté par M. le Dr David Bartlett du National Radiological Protection Board (UK) et avait pour thème l'harmonisation et l'assurance de qualité de la dosimétrie individuelle de l'irradiation externe. M. Bartlett a présenté les résultats d'une enquête effectuée dans le cadre du groupe EURADOS et visant à analyser non seulement les modalités de la surveillance de l'irradiation externe en Europe, mais aussi le niveau de réglementation dans ce domaine. Ce travail a permis de vérifier que les nouvelles grandeurs de l'irradiation externe, $H_{\rm p}(10)$ et H_p(0.07) et les modalités dosimétriques recommandées par l'ICRU sont reconnues ou en voie de l'être dans tous les pays d'Europe. M. Bartlett a aussi présenté les résultats d'intercomparaisons extensives dans le domaine de la dosimétrie du rayonnement β_{γ} , ainsi que dans le cas du rayonnement neutronique. Alors que dans le cas des photons, les performances des systèmes sont en général très satisfaisantes, un effort reste à consentir dans le cas de la dosimétrie neutronique. A noter que dans ce domaine des méthodes émergent, en particulier celle basée sur le système DIS (direct ion storage), qui pourraient apporter des solutions intéressantes dans les prochaines années.

Le second exposé, présenté par M. Christian Wernli, avait pour thème la situation de la dosimétrie individuelle en Suisse comparée à l'Union européenne. M. Wernli, président du groupe d'experts pour la dosimétrie individuelle de la Commission fédérale de radioprotection, a mis en évidence que la Suisse fait bonne figure, non seulement au niveau de sa pratique, inspirée des dernières recommandations internationales, mais également de sa législation. A ce niveau, l'ordonnance sur la dosimétrie individuelle, entrée en vigueur au 1^{er} janvier 2000, met la Suisse dans une situation très confortable, aussi bien en ce qui concerne la surveillance de l'irradiation externe que celle de la dosimétrie d'incorporation. Cette situation très réjouissante est d'ailleurs confirmée par les résultats des intercomparaisons organisées chaque année par le groupe d'experts pour la dosimétrie individuelle.

Un second thème a ensuite été présenté par M. Bartlett; il s'agissait de l'implémentation des exigences européennes sur la radioprotection du personnel des compagnies d'aviation. Après un rappel des caractéristiques et des doses liées au rayonnement cosmique, M. Bartlett a présenté les mesures prévues par l'Union européenne, à savoir l'évaluation de l'exposition du personnel, la prise en compte de ces doses dans l'organisation du travail, ainsi que l'information du personnel et la possibilité aux femmes enceintes d'être dispensées du service de vol. Cette information est très utile pour notre pays où seules les deux dernières exigences figurent dans l'ordonnance et où une étude est actuellement en cours pour vérifier le degré de réalisation de ces exigences sur le terrain. Ce thème reste actuel et sera une des préoccupations de la nouvelle commission.

Que toutes les personnes qui ont concouru au succès de ce séminaire, les conférenciers et les participants, soient ici remerciés, sans oublier le secrétariat de la commission qui a assuré l'organisation du séminaire et la présente publication des résumés des exposés.

Prof. Jean-François Valley, président

2. Tagesprogramm

09.00 - 09.15	Begrüssung durch Prof. Dr. Jean-François Valley				
09.15 - 12.00	Personendosimetrie in Europa Moderator: Prof. Dr. Jean-François Valley				
09.15 - 10.00	 Dr. David Bartlett (NRPB) Harmonization and Dosimetric Quality Assurance of Individual Monitoring of External Radiation 				
10.00 - 10.20	 Christian Wernli, Dipl. Physiker ETH Stand der Personendosimetrie in der Schweiz im Vergleich zur Europäischen Union 				
10.20 - 10.40	Pause				
10.40 - 11.00	 Dr. David Bartlett (NRPB) Implementation of EU Requirements for the Radiation Protection of Aircraft Crew for Cosmic Radiation 				
11.00 - 12.00	Diskussion				

12.00 Schlusswort von Prof. Dr. Jean-François Valley

3. Moderatoren- und Referentenliste

Leitung und Moderation:

 Prof. Dr. ès.sc.nat. Jean-François Valley, Präsident der EKS Directeur de l'Institut de radiophysique appliquée (IRA), Lausanne

Referenten:

- Dr. David Bartlett, NRPB, Oxon, United Kingdom
- Christian Wernli, Dipl. Physiker ETH, Chef der Sektion Messwesen am Paul Scherrer Institut Villigen-PSI

- 4. Personendosimetrie in Europa
- 4.1. Harmonization and Dosimetric Quality Assurance of Individual Monitoring of External Radiation Dr. David Bartlett (NRPB)
- 4.2. Implementation of EU Requirements for the Radiation Protection of Aircraft Crew for Cosmic Radiation Dr. David Bartlett (NRPB)

4.3. Stand der Personendosimetrie in der Schweiz im Vergleich zur Europäischen Union Christian Wernli, Dipl. Physiker ETH

HARMONISATION AND DOSIMETRIC QUALITY ASSURANCE IN INDIVIDUAL MONITORING FOR EXTERNAL RADIATION

The European Radiation Dosimetry Group (EURADOS) is a scientific society founded in 1981 to stimulate and improve co-operation on radiation dosimetry research and related topics within the European Union. The recommendations made and protocols developed by EURADOS are based on the scientific expertise of its members and should therefore provide a good scientific basis for the harmonisation of standards and procedures within the European Union.

EURADOS, in December 1996, set up an Action entitled ' Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation'.

The principal objectives of this Action were to assist the consolidation within the EU of the quality of individual monitoring using personal dosemeters and to facilitate harmonised procedures.

Also to be considered were:dose quantities; dosimetric requirements, including reliability, uncertainties; approval procedures and QA; inventory of dosemeters and methods; consolidated performance test.

	cial Journal	L 159 Volume 39
of the El	fropean Communities	29 June 1996
English edition	Legislation	
2	terre all'il constant di	
Contents	1 Acts whose publication is obligatory	
	II Acts whose publication is not obligatory	
	C1	
	Council	
	★ Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 layi standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against
	Council Directive 96/29/Euratom of 13 May 1996 lay standards for the protection of the health of workers and th the dangers arising from ionizing radiation	ing down basic safety e general public against

'individual monitoring shall be systematic for exposed category A workers ... based on individual measurements which are established by an approved dosimetric service'

'Approved dosimetric service: a body responsible for the calibration, reading or interpretation of individual monitoring devices, or for the measurement of radioactivity in the human body or in biological samples, or for assessment of doses, whose capacity to act in this respect is recognised by the competent authorities'

'operational quantities for external radiation are used for individual monitoring for radiation protection purposes'

'Each Member State shall make the necessary arrangements to recognize, as appropriate, the capacity of the approved dosimetric services'

The principle of the free movement of goods and services within the European Union would suggest that, in due course, an individual measurement of dose made by an approved dosimetric service in one Member State might be acceptable to the relevant authorities in another.

This is already implied by the outside workers directive, in which a dosimetric service in one Member State is authorised to enter dose data into a radiation passbook of a worker from an other Member State.

RADIATION PROTECTION 73

Technical recommendations

for monitoring individuals occupationally exposed to external radiation

EUROPEAN COMMISSION

DIRECTORATE-GENERAL DG XI ENVIRONMENT, NUCLEAR SAFETY AND CIVIL PROTECTION

Report EUR 14852 EN

EUROPEAN COMMISSION

DIRECTORATE-GENERAL DG XI ENVIRONMENT, NUCLEAR SAFETY AND CIVIL PROTECTION

RADIATION

PROTECTION 78

Present status of practical aspects of individual dosimetry

Part I: EU Member States

EUROPEAN COMMISSION

DIRECTORATE-GENERAL DG XI ENVIRONMENT, NUCLEAR SAFETY AND CIVIL PROTECTION

Peter Ambrosi (PTB, Germany) Carlo Back (Ministère de la Santé, Luxembourg) **David Bartlett (NRPB, UK)** Jean-Marc Bordy (IPSN, France) **Poul Christensen (Risø, Denmark) Tony Colgan (RPII, Ireland)** Antonio F. de Carvalho (ITN, Portugal) Antonio Delgado (CIEMAT, Spain) Janwillem van Dijk (NRG, Netherlands) **Elena Fantuzzi (ENEA, Italy)** Hannu Hyvönen (STUK, Finland) Lennart Lindborg (SSI, Sweden) Hannes Stadtmann (ARCS, Austria) Filip Vanhavere (SCK-CEN, Belgium)

Christian Wernli (PSI, Switzerland) Maria Zamani-Valasiadou (Aristotle Univ. Thessaloniki, Greece)

HARMONISATION

The definition of harmonise is "to sing or play in harmony, to be in harmony; to agree; to form a concord" and of harmony "combination or adaptation of parts, elements or related things, so as to form a consistent and orderly whole; agreement; congruity"

Harmony is a musical term and the musical definition is "The combining of notes simultaneously, and their successive use to produce chord progressions.....harmony is concerned with the movement of individual voices"

Harmonisation as applied to dosimetric services, for example, does not mean that they should all follow exactly the same procedures, any more than different voices should sing the same notes to be in harmony. The dosimetric services should aim to meet the same general requirements, and be in the same 'key', to follow the music parallel.

Tissue weighting factor, w_T 0.20 0.12 0.05 0.01 NRPB

Sub-group A

The task was to prepare a report on the current status within EU Member States and Switzerland of requirements for approved dosimetric services. The present situation amongst Member States is that there are widely differing national requirements for performance of dosimetric services and the dosemeters. It is clear that with the free movement of workers within the EU and the multinational ownership of companies, a degree of harmonisation requirements and procedures would of be desirable. The purpose of the report is to assist harmonisation, by giving the current status of procedures and requirements in Member States and Switzerland thereby allowing comparisons to be made.

Sub-group B

The purpose was to present an overview of dosemeters and dosimetric services within EU member states and Switzerland that were able to estimate external radiation doses as personal dose equivalent, $H_p(d)$. The total number of dosimetric services in the EU and Switzerland was estimated to be approximately 200. Questionnaires requesting information on various topics concerning the dosimetric systems used, were sent to these services. Of the dosimetric services that responded, 45 reported that they estimated the external radiation doses as personal dose equivalent, $H_p(10)$ and $H_p(0.07)$. The majority of these services used thermoluminescence dosemeters (TLDs). From the results of this study combined with some information from other studies, it was estimated that roughly 50% of the radiological workers in the EU and Switzerland were monitored in terms of personal dose equivalent

Sub-group C

The task was to gain an overall assessment of the ability of current dosimetric services to determine the operational quantities $H_p(10)$ and $H_{\rm p}(0.07)$, with emphasis on the performance in workplace fields, and to understand the physical basis for the performance characteristics, and to allow an assessment to be made as to whether proposed dosimetric requirements, in particular performance test criteria in use or proposed, were suited to present dosimetric services

Sub-group A: Procedures for routine individual dose assessment of external radiation within EU Member States and Switzerland- status of harmonisation on 1st April 1999

P. Ambrosi (co-ordinator)E. Fantuzzi A. F. de CarvalhoA. Delgado L. Lindborg D. T. Bartlett

Statistics of services and persons monitored

Code	No. of services	Total no. of persons monitored	No of persons monitored with dosemeters worn on					
			the trunk for			the extremities for		
			photons	neutrons	betas	photons	neutrons	betas
А	4	35 500	35 000	250		2 0 0 0		
В	13	43 500	43 500	3 50				
СН	10	62 000	62 000	5000	60 0 00	1 500 ^{ch})		1 500 ^{ch})
D	6	288 000 ^d)	288 000 ^d)	$6600^{\rm d}$)		12 000 ^d)		320 ^d)
DK	3	11 000	11 000	155	11 000	50		50
Е	20	87 000	87 000	$\sim 5\ 000$	~3000	~3 000		~300
EL	1	7 0 00	7 0 00	100		100		
F	7	230 000	230 000	16 700	29 800	16 300 ^f)	7 250 ^f)	9600 ^f)
FIN	3	12 000	12 000	80		370		
Ι	80 ⁱ)	130 000	128 000	2000		30 000		
IRL	3 ^{irl})	5 8 5 0	5 8 5 0	80		250		40
L	1	1 1 0 0	1100		1100	_		
NL	5	34 000	34 000		3 5 0 0	_		
Р	2	9 0 00	9000			100 ^p)		
S	12	20 000	20 000	2000		_		
UK	28 ^{ukl})	150 000 ^{uk2})	150 000 ^{uk2})	25 000 ^{uk2})	150 000 ^{uk2})	10 000 ^{uk2})		10 000 ^{uk2})
Total	198	1 1 25 9 50	1 1 23 4 50	63 3 1 5	258 400	76 670	7 2 5 0	21 810

The ICRP75 recommendations, applied to the magnitude of the quotient of the measured dose value, $H_{\rm m}$, and the conventionally true value, $H_{\rm t}$, may be interpreted as follows:

for a dose value equal to or approaching the annual dose limit, acceptable performance is described by the relation $1.5 > H_m/H_t > 1/1.5$ at the 95 % confidence level, *i.e.* with a standard uncertainty with a coverage factor of 2

for a dose value less than or equal to H_r , the recording level for a monitoring period, the corresponding relation is $2.0 > H_m/H_t > 0$, no confidence levels are given

ICRU Report 47

'a total uncertainty in the measurement of the operational quantity of one standard deviation of 30% should be acceptable'

'the error of instruments may substantially exceed the value of 30% at some neutron energies or angle, but be acceptable for workplace fields with broad energy and angle distributions'

Personal dosimeters will, at best, only register the dose equivalents received by the regions of the body that are in proximity to these devices. As a general rule, errors in the determination of dose equivalents in radiation protection should be on the safe side

The general requirements are considered, and their routine application, categorised in this study as 'trumpet curves'; 'criteria based on consideration of bias and standard deviation'; or 'criteria based on the analysis of measurement data'

National requirements on overall accuracy for individual monitoring with reference to international standards

Code	Requirements on overall accuracy						
А	95 % level: $ H_{\rm m} - H_{\rm mref} / H_{\rm mref} < 0.5 + H_0 / (H_0 + H_{\rm t})$ Eq. A1						
	$H_0 < 0.2 \text{ mSv for } H_p(10)$ and $H_0 < 1.0 \text{ mSv for } H_p(0.07)$						
	$ H_{t} - H_{m,ref} /H_{t} < 0.4$ for $H_{t} < 1 \text{ mSv}$						
	$ H_{t} - H_{mref} /H_{t} < 0.25$ for $H_{t} > 1 \text{ mSv}$						
В	There are no official requirements, but the performance of the dosemeter is judged by an expert of the ministry						
СН	Must fulfil overall accuracy requirement of EUR 73						
D	92 % level: $1 + 0.4 \cdot t(H_t) > H_m/H_{m,ref} > 1 - 0.4 \cdot t(H_t)$, $H_0 < 0.2 \text{ mSv}$						
DK	Must fulfil overall accuracy requirement of EUR 73						
Е	IEC 1066						
EL	According to EUR 73						
F	IEC 1066, ISO 14146						
FIN	According to EUR 73						
Ι	$0.7 \left[1-2 K_0 / (K_0 + K_t)\right] < K_m / K_t < 1.5 \left[1 + K_0 / (2 K_0 + K_t)\right]$						
IRL	According to EUR 73						
L	None						
NL	Must fulfil overall accuracy requirement of EUR 73						
Р	There are no official requirements						
S	According to EUR 73						
UK	For thermoluminescent and photographic film dosemeters to assess $H_p(10)$ or $H_p(0.07)$:						
	95 % level: $1.5 > H_m/H_t > 1/1.5$ for $H_t \approx H_a$ $(H_a = 50 \text{ mSv} [\text{ICRP 26}])$						
	$ \begin{pmatrix} H \\ a \end{pmatrix} = 20 \text{ mSv} [\text{ICRP 60}] $						
	$2.0 > H_{\rm m}/H_{\rm t} > 0.5$ for $H_{\rm t} < 10 \text{ mSv}$ [ICRP 35]						
	$2.0 > H_{\rm m}/H_{\rm t} > 0$ for $H_{\rm t} = H_{\rm r}$, $H_{\rm r} = 0.2 {\rm mSv} [H_{\rm p}(10)]$						
ICDD 25	of $H_r = 2 \text{ mSV} [H_p(0.07)]$						
ICRP 35	95 % level: $1.5 > H_m/H_t > 1/1.5$ for $H_t \approx H_a$ $H_a = 50 \text{ mSV} [1C \text{ KP } 26]$						
	(=20 mSv [ICRP 60])						
	$2.0 > H_{\rm m}/H_{\rm t} > 0.5$ for $H_{\rm t} < 10 {\rm mSv}$ [ICRP 35]						
	$2.0 > H_{\rm m}/H_{\rm t} > 0$ for $H_{\rm t} = H_{\rm r}$, $H_{\rm r} = H_{\rm a}/120$						
ICRP 60	$1.5 > H_{\rm m}/H_{\rm t} > 1/1.5$ for $H_{\rm t} \approx H_{\rm a} = 20 {\rm mSv}$ $\overline{H_{\rm c}}$						
ICRP 75	95 % level: $1.5 > H_m/H_t > 1/1.5$ for $H_t \approx H_a$ (^{<i>u</i>} = 20 mSv [ICRP 60])						
	$2.0 > H_{\rm m}/H_{\rm t} > 0$ for $H_{\rm t} = H_{\rm r}$, $H_{\rm r} > 0.085$ mSv						
EUR 73	95 % level: trumpet curve with $H_0 = H_1/10$ (2.0 > $H_m/H_t > 0$ for $H_t = H_0$)						
	$(\pi_0 \text{ is lowest dose required to be measured})$ $H_{\rm c} = 20 \text{ mSy as given by ICRP 60}$						
	$H_0 = 0.17 \text{ mSv}$ for monthly monitoring period, $H_1 = 20 \text{ mSv}/12$						
	\Rightarrow H ₀ = 0.08 mSv for two-weekly monitoring period, H ₁ = 20 mSv/24						
ISO 1757	No special requirements						

Continued

Code	Requirements on overall accuracy
ISO 14146 d	90 % level: trumpet curve $(H_0 > 0.2 \text{ mSv} \text{ is the lower limit of the dose range specified in the type test})$
IEC 1066	no requirement (95 % level: $1.77 > H_m/H_t > 0.33$ Calculated according to ISO guide)
IEC 1283 ser.	no requirement (95 % level: $2.1 > H_m/H_t > 0.0$ Calculated according to ISO guide)
IAEA 99	as EUR 73
Definitions:	$\begin{array}{rcl} H_{\mathrm{m}}, K_{\mathrm{m}} &\coloneqq \mathrm{measured\ dose\ or\ air\ kerma\ value\ for\ the\ period\ considered} \\ H_{\mathrm{m,ref}} &\coloneqq \mathrm{measured\ dose\ value\ under\ reference\ conditions} \\ H_{\mathrm{t}}, K_{\mathrm{t}} &\coloneqq \mathrm{conventional\ true\ value\ of\ the\ dose\ or\ air\ kerma} \\ K_{0} &\coloneqq \mathrm{minimum\ kerma\ value\ for\ the\ irradiation\ test\ (0.1\ \mathrm{mGy\ or\ 0.05\ mGy} \\ for\ trunk\ and\ for\ extremity\ dosemeters\ respectively) \\ H_{a} &\coloneqq \mathrm{dose\ limit\ for\ the\ period\ of\ one\ year} \\ H_{r} &\coloneqq \mathrm{recording\ level\ for\ the\ period\ of\ one\ month } \\ H_{1} &\coloneqq \mathrm{dose\ limit\ for\ the\ period\ of\ one\ month } \\ H_{1} &\coloneqq \mathrm{dose\ limit\ for\ the\ period\ considered} \\ U_{95} &\coloneqq \mathrm{absolute\ uncertainty\ of\ } \\ H_{m} \ on\ 95\ \%\ level \\ \mathrm{trumpet\ curve:} \frac{1}{1.5} \left(1 - \frac{2H_{0}}{H_{0} + H_{t}}\right) \boxdot \frac{H_{m}}{H_{t}} \boxdot 1.5 \left(1 + \frac{H_{0}}{2H_{0} + H_{t}}\right) \\ \mathrm{trumpet\ function:} t(H_{t}) = 1 + \frac{20}{9} \frac{H_{0}}{H_{0} + H_{t}}, \\ H_{0} &\coloneqq \mathrm{lowest\ dose\ for\ which\ trumpet\ curve\ can\ be\ used \end{array}$

Codo	Lega	l basis for approva	l for	Type of Approval and	Approval	Domork
Coue	photons	neutrons	betas	who did it	frequency	Kemai k
А	(A3, A4)	None	None	formal type test by BEV ^{a1})	Once	
В	(B2)	(B2)	(B2)	Report judged by expert of Ministry	10 years	
СН	(CH2, CH3)	(CH2, CH3)	(CH2, CH3)	Part of approval procedure for service	5 years	
D	(D7, D8, D9)	(D8)	(D8)	Photons: type-test by PTB ^{d1}) All: Formal approval by BLA ^{d1)}	Once	
DK	Compliance with intern. standards	Compliance with intern. standards	Compliance with intern. standards	Details of dosemeter characteristics to be provided as part of approval of service	Once	None
Е	(El)	(E1)	(E1)	Comparison with (15)	Once	None
EL	Compliance with intern. standards	Compliance with intern. standards	None	GAEC ^{el})	GAEC	
F	(F1 – F3, F8, F12 – F15)	Compliance with intern. standards	Compliance with intern. standards	Mandatory tests ^{f1})	Once a year ^{f2})	
FIN	(FIN10)	None	(FIN10)	Inspector on site by STUK	Before the service starts	_
Ι	Art.107 ^{(14) i1})	None	None	'Type test' done by 'Control Institutes'		
IRL	Compliance with intern. standards	Compliance with intern. standards	Sourced Externally	Approved by Ra- diological Protection Institute of Ireland (RPII)	Before the service starts	
L	None	None	None			None
NL	(NL2)	(NL2)	(NL2)	Type-test report, Ministry for SZW	Once	—
Р	None ^p)	None ^p)	None ^p)	—		None
S	(\$3)	(\$3)	(\$3)	Photon and beta tests ^s)	2 years	
UK	None	None	None	Details of dosemeter characteristics to be provided as part of approval of service	5 years	^{uk})

Approval of (or acceptance requirements for) dosemeters

QA Procedure officially prescribed

Abbreviations used in the table: at.: announced test; int.: intercomparison; pt.: performance test; st.: surprise test

Code	Legal or perf	other basis for formance testin	external g for	Dosimet perf	tric method for formance testing	external g for	Remark
	photons	neutrons	betas	photons	neutrons	betas	
А	(A3) a)	None	None	Monthly at. ^a)	None	None	
В	None	None	None	None	None	None	
СН	(CH2)	(CH2)	(CH2)	annual at.	irregular at.	irregular at.	
D	(D3, D6)	(D8)	(D8)	annual st.	annual at.	annual at.	
DK	compliance with intern. Standards	compliance with intern. Standards	compliance with intern. Standards	annual at.		annual at	_
Е	None	None	None	voluntary tests	None	None	
EL	None	None	None	annual at. and st.	annual at. and st.		
F	Mandatory test ^f)	None	None	Annual at.	None	None	—
FIN	Inspection ^{fin})	Inspection ^{fin})	Inspection ^{fin})	Periodical pt.	None	Periodical pt.	
Ι	None	None	None	EDP: vol- untary test	none	none	^I)
IRL	informal pt.	informal pt.	None	Bi–annual int.	None	Bi–annual int.	
L	None	None	None	None	None	None	
NL	None	None	None	None	None	None	
Р	None	None	None	None	None	None	
S	(\$3)	(\$3)	(\$3)	Bi-annual at.	Bi-annual at.	Bi-annual at.	
UK	Regulation 15 of IRR 85 ^(UK2)	Regulation 15 of IRR 85 ^(uk2)	Regulation 15 of IRR 85 ^(uk2)	pt. at intervals of 18 months ^{uk1})	Currently no performance tests ^{uk2})	Currently no performance tests ^{uk2})	^{UK2})

Sub-group B:

A catalogue of dosemeters and dosimetric services within EU Member States and Switzerland able to estimate external radiation doses as personal dose equivalent

J.W.E. van Dijk (co-ordinator) J.M. Bordy F. Vanhavere C. Wernli M. Zamani-Valasiadou

Aim of the catalogue

Facilitating harmonisation by sharing the information on the design and properties of personal dose equivalent dosemeters and on the quality assurance of individual monitoring

EURADOS Part I EURADOS Part II EURADOS Part II Questionnaire Country Table 8 Hp only Workers Code Services **Workers** Services Workers Services 35 500 33 500 4 4 Α 3 В 3 13 43 500 6 0 0 0 6 0 0 0 CH 10 62 0 0 0 7 44 900 7 44 900 6 6 287 930 122 000 1 D 3 3 3 DK 11 0 0 0 11 0 0 0 11 0 0 0 Ε 20 87 0 0 0 4 52800 4 52 800 2 2 EL 1 7 0 0 0 6 0 0 0 6 0 0 0 7 7 F 7 230 000 224 900 224 900 2 2 FIN 3 12000 3400 3400 2 2 80 130 000 8 0 0 0 IRL 3 1 1 5850 4 5 0 0 4 5 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 5 NL 33 0 0 0 32 6 0 0 32 6 0 0 4 4 2 Ρ 8000 1 4 0 0 0 1 4 0 0 0 S 12 3 3 20 0 0 0 13 3 0 0 13 300 UK 7 7 28 200 000 46 9 0 0 46 900 1 173 880 Total 198 57 614 900 451 400 48

Statistics of dosimetric methods of dosemeters worn on the trunk

The following abbreviations are used: NT: Nuclear emulsion detector (NTA); PL: Photoluminescence detector; ED: Electronic dosemeter; BD: Bubble detector; Cd: Photographic film plus Cd converter

		No of persons monitored with dosemeters worn on the trunk for										
Code]	photons usin	g		neutrons usin	g	betas	using				
	TLD	Film	other	TLD	Track etch	other	TLD	other				
А	35 000			250								
В	~31 500 ^b)	12 000 ^b)										
СН	56 000	6000			1 0 0 0	NT: 4000	54 000	6000				
D	5600	273 000	PL: 9 500	5 600	50	NT: 600						
DK	2 0 0 0	9 0 00		400	155	—	2 000	Film: 9 000				
Е	87 000			~5000			~3 000					
EL		7 000		100								
F	11 100	230 000	EPD: 20 000	12 100		NT: 4600 BD: 1000 Cd: 3300	11 100	Film: 29 800				
FIN	12 000			80			12 000					
Ι	80 000 ⁱ)	50 000 ⁱ)	_	2 0 0 0	1 0 0 0	_						
IRL	5850		_			NT: 80						
L	1100					_	1 1 0 0					
NL	34 000		_	1000	—	—	3 500					
Р	6500	2500	_			_						
S	10 000	10 000	_	2 0 0 0		_						
UK	100 000	50 000	EPD: 150	100	10 000	NT: 5000 Cd: 10000	100 000	50 1 50				
Total	477 650	649 500	29 6 50	28 6 3 0	12 205	28 5 80	186 700	94 9 50				

b)

i)

Absorption of detector materials relative to soft tissue

Dose to Lithium Fluoride Detector Relative to Tissue Dose, With and Without Absorbers

$H_{\rm p}(10)_{\rm measured}/H_{\rm p}(10)_{\rm true}$

$H_{\rm p}(0.07)_{\rm measured}/H_{\rm p}(0.07)_{\rm true}$

$H_{\rm p}(10)_{\rm measured}/H_{\rm p}(10)_{\rm true}$

$H_{\rm p}(10)_{\rm measured}/H_{\rm p}(10)_{\rm true}$

EURADOS

GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT

CORRECTED AND REPRINTED, 1995

INTERNATIONAL VOCABULARY OF BASIC AND GENERAL TERMS IN METROLOGY VOCABULAIRE INTERNATIONAL DES TERMES FONDAMENTAUX ET GÉNÉRAUX DE MÉTROLOGIE

- 1. Main sources of uncertainty
- 2. Uncertainty in dose measurement
- **3. Detection limit**

EURADOS

Uncertainty

Sub-group C: Trial performance test of dosimetric services in the EU Member States and Switzerland for the routine assessment of individual doses (photon, beta, and neutron)

J.M. Bordy (co-ordinator) H. Stadtmann P. Ambrosi D. T. Bartlett P. Christensen T. Colgan

EURADOS

E/eV

	Α	F	G	L	D	E	Ρ				
AP (front)	31	46	21	33	38	39	68				
PA (back)	12	7	18	4	6	6	1				
LAT (average)	13	15	15	15	14	14	11				
ТОР	24	9	24	22	14	14	4				
BOTTOM	7	8	7	11	14	13	6				
As	As above interpreted as two field components, AP and ISO										
AP (front)	17	35	4	20	25	26	61				
ISO	83	65	96	80	75	74	39				

Radiation Fields Used

Radiation Field Code.	Radiation quality	Irrad. lab.	Nominal <i>H</i> _p (10) _{slab}		
D01	$P = (0^{\circ}) \pm 10/(300) (10/A \pm 80^{\circ}) [50.9\% \pm 50.9\%]$	DTR			
FVI	K-1 (0) + W-300 (WA ± 80) [30 /8 + 30 /8]	FID	1,011130		
P02	R-F (0°) + W-300 (WA ± 80°) [20 % + 80 %]	PTB	7,2 mSv		
P03	R-F (0°)	PTB	1,0 mSv		
P04	R-F (0°) without electronic equilibrium	PTB	1,0 mSv		
P05	S-Ir (0°) + S-Ir (WA ± 80°) [50 % + 50 %]	ARCS	10,0 mSv		
P06	S-Ir (0°)	ARCS	1,0 mSv		
P07	S-Ir (0°)	ARCS	40,0 mSv		
P08	S-Ir (WA ± 80°)	ARCS	10,0 mSv		
P09	S-Co (0°) + W-80 (WA ± 80°) [50 % + 50 %]	NRPB	3,0 mSv		
P10	S-Co (0°) + W-80 (WA ± 80°) [80 % + 20 %]	NRPB	80,0 mSv		
P11	S-Co (0°) + W-80 (WA ± 80°) [80 % + 20 %]	NRPB	1,0 mSv		
P12	W-80 (WA ± 80°)	NRPB	0,4 mSv		

Dosemeters used

D	Dosemeter <u>code</u> and (type)								
		4 elements	2						
	Li F ⁷	3 elements	1						
		2 elements	1						
		1 element	1						
<u>PT</u>	LiF nat.	4 elements	3						
(TLD)		2 elements	2						
	Li ₂ B ₄ O ₇ CaSO ₄	4 elements	4						
	Li ₂ B ₄ O ₇	1 element	1						
	Li ₂ B ₄ O ₇ LiF	4 elements	1						
	LiF ⁷ + LiF nat.	3 elements	1						
		7 elements	2						
<u>PF</u>	(Film)	6 elements	1						
		5 elements	3						
		2 elements	2						
PV	(Glass)	1 element	1						
	Total number		26						

Dosimeter codes:

- PF, photographic film
- PT, thermoluminescent detector
- <u>PV</u>, various(radiophotoluminescent detector, electronic,)

Evaluation of the submitted data

- <u>12 dosimeters</u> of each participant <u>were</u> <u>irradiated</u>.
- No information about the radiation quality or the angle of incidence was given.
- The participants were requested to <u>report</u> <u>their results in term of personal dose</u> <u>equivalent</u> $H_p(10)$ on a prepared data-sheet.

Summary of all Results

Radiation Quality	tion Quality R-F + W-300		R-F	R-F *	S-Ir			S-Co + W-80			W-80	Mean	Number	
Direct. of incidence	0° + WA		0°	0 °	0° + WA	0°	0°	WA	0° + WA			WA	Values	of
Dose distribution	50%+50%	20%+80%	-	-	50%+50%	-	-	-	50%+50%	80%+20%		-		outliers
Nominal dose / mSv	7,2	1	1	1	10	1	40	10	3	80	1	0,4		
Lab. Nr. PT01	0,98	1,01	0,88	2,35	1,01	1,04	0,97	1,07	1,11	0,95	1,06	0,75	1,10	1
PT02	0,68	1,07	0,85	1,68	0,65	0,79	0,61	0,66	0,75	0,69	0,97	0,99	0,87	3
PT03	1,01	1,02	0,88	1,99	0,93	0,86	0,95	0,95	1,01	0,99	0,84	1,07	1,04	1
PT04	1,14	1,15	1,12	1,46	1,03	1,01	1,04	1,07	1,10	1,14	1,32	1,24	1,15	0
PT05	1,21	1,31	1,13	0,87	1,21	0,97	0,92	0,90	1,04	1,29	1,21	1,08	1,10	0
PT06	0,92	0,90	1,04	1,43	0,84	0,80	0,86	0,85	0,91	0,87	0,80	0,94	0,93	0
PT07	0,94	1,09	0,82	1,44	0,95	1,05	0,95	0,94	0,92	0,94	1,01	0,73	0,98	0
PT08	1,06	0,90	0,94	1,66	0,91	1,01	1,00	1,03	1,01	0,92	0,90	1,18	1,04	1
PT09	0,98	0,98	0,89	0,93	0,94	0,92	0,94	1,00	0,97	0,95	0,96	0,87	0,94	0
PT10	1,00	1,06	1,06	1,62	0,94	1,06	0,84	0,92	0,95	0,87	1,06	1,65	1,09	1
PT11	1,12	1,08	1,05	1,06	1,02	1,00	1,01	1,06	0,78	0,70	0,89	1,41	1,02	0
PT12	1,07	0,95	0,92	1,86	0,98	0,93	0,93	1,00	0,98	1,05	0,99	0,80	1,04	1
PT13	1,06	1,04	1,18	2,30	1,04	1,02	1,02	1,07	1,27	1,11	1,04	1,18	1,19	1
PT14	1,05	1,03	1,02	1,30	0,89	0,89	0,89	0,89	0,93	0,84	0,89	0,99	0,97	0
PT15	1,01	0,97	0,89	1,90	0,83	0,95	0,85	0,87	0,92	0,84	0,85	1,11	1,00	1
PT16	0,91	0,81	0,80	1,43	0,89	0,83	0,85	0,96	0,85	0,78	0,82	0,82	0,90	0
PT17	1,02	0,91	0,68	1,04	1,00	0,82	0,91	1,14	1,01	1,07	0,86	1,20	0,97	0
PF01	1,32	1,69	1,35	2,10	1,08	1,06	0,98	1,07	1,36	1,04	1,21	1,84	1,34	3
PF02	0,97	1,40	2,07	1,76	0,78	0,80	0,75	0,76	0,96	0,90	0,99	1,22	1,11	2
PF03	0,94	0,94	0,86	1,53	0,86	0,85	0,82	0,91	0,93	0,80	0,80	0,94	0,93	0 (1)
PF04	1,02	1,53	1,13	1,73	0,96	1,01	0,71	0,91	1,20	0,87	1,20	1,41	1,14	1 (2)
PF05	1,13	1,59	1,55	2,10	0,97	1,04	0,88	0,94	1,10	0,88	1,24	1,01	1,20	1 (3)
PF06	1,04	1,54	2,38	2,05	1,01	1,11	1,04	0,97	1,30	1,10	1,20	1,88	1,39	3 (4)
PF07	1,08	1,52	1,91	2,14	0,84	0,75	0,76	0,79	0,72	0,51	0,35	1,18	1,05	4 (5)
PF08	0,93	1,35	1,05	1,55	0,68	0,90	0,87	0,73	0,94	0,66	0,90	1,18	0,98	1
PV01	1,08	1,18	1,40	1,62	1,03	1,01	1,04	1,06	1,03	1,06	1,02	0,88	1,12	1
Mean values	1,03	1,15	1,15	1,65	0,93	0,94	0,90	0,94	1,00	0,92	0,98	1,14	1,06	-
Number of outliers	0	1 (5)	3 (4)	15 (16)	1	0	1	0	0	2	1	2	-	26 (32)

Results given as response values for all participating laboratories and for all different radiation qualities. The number of outliers are values outside the trumpet curve; the numbers in bracket are values outside the 1/1.5 to 1.5 range criterion (WA = wide angle ±80°, R-F* = R-F without electronic equilibrium)

EURADOS

Trumpet curve of all responses

Results

EURADOS

Conclusion

- <u>Most results</u> of tested photon dosemeter fall within the limits of the trumpet curve (91,7 %) and within the 1/1,5 to 1,5 range (89,7 %) and <u>fulfil</u> <u>the performance requirements</u>
- The majority of outliers were found for the R-F radiation field without electronic equilibrium. This special field is not routinely encountered by many of the dosimetric services and the dosemeters used are not designed and type tested for this field.

Conclusion (2)

- It was found that the <u>TLD based</u> <u>dosemeter results are better than the film</u> <u>based dosemeter</u> ones.
- Comparing with the data of <u>type tests</u>, where better results are reported for film based dosemeter, it seems that it is more difficult to obtain good results with film based dosemeters <u>in workplace fields</u>.

18 beta whole body dosemeters
16 TLDs
2 film dosemeters
8 extremity dosemeters
all TLDs
6 finger dosemeters
2 wrist dosemeters

Questionnaire for participants of the beta dose test programme

```
Detector: type:.....; thickness: .....mg/cm<sup>2</sup>; area/diameter:....
```

Beta window: please make a sketch of the beta window above the detector with indication of diameter,(for conical windows max. and min. diameter) and distance (in mm) between upper surface of detector and upper surface of beta window and mention diaphragm material.

```
Protective cover: material:....;
thickness:.....mg/cm<sup>2</sup>;
```

```
Dose evaluation: Ref. radiation used for calibration(<sup>60</sup>Co, <sup>137</sup>Cs, <sup>90</sup>Sr,others):.....
```

No use of beta-energy analysis:..... Use of beta-energy analysis (by use of

filters):....

Beta TLD			⁹⁰ Sr/ ⁹⁰	Y			Total	
whole	0 °	40°	60°	0 °	40°	60°		
dosem								
Total	No.	13	13	13	13	13	13	78
Inside	No.	13	11	2	10	8	2	46
trump.	(%)	100	85	15	77	62	15	59
curve	Mean	Τ	otal: 2	26	Τ]		
limits	of		(74 %)				
	source							
Inside	No.	13	10	0	9	5	0	37
1/1.5-1.5	(%)	100	77	0	69	38	0	47
limits	Mean	Τ	otal: 2	23	Τ]		
	of	(59 %)			(36 %)			
	source							

Detector	Detector thickness (mg/cm ²)	Cover thickness (mg/cm ²)	Beta window edge/ shadow effect	Use of algorith for dose evaluat.
Kodak 2	Thin	25+0/50/300		X
Kodak 2	Thin	25+0/50/300		X
LiF-7 Teflon	44	4		
LiF:Mg,Ti TLD-700	240	7	X	
LiF:Mg,Ti TLD-100	100	13		
Li ₂ B ₄ O ₇ :Mn,Si (Alnor)	190	10	X	
Li ₂ B ₄ O ₇ :Cu (Panasonic)	14	20	X	X
LiF:Mg,Ti TLD-720	24	20	X	
LiF:Mg,Cu,P GR-200	208	20	X	X
Li ₂ B ₄ O ₇ :Cu (Panasonic)	15	3	X	X
LiF:Mg,Ti TLD-700	240	45		
LiF:Mg,Ti TLD-700	240	45		
LiF:Mg,Ti TLD-100	100	30	X	X
LiF:Mg,Ti TLD-720	24	20	X	
LiF:Mg,Ti TLD-100	100	47	X	

Extr	emity	⁹⁰ Sr/Y			²⁰⁴ П				¹⁴⁷ Pm			Total	
dosei	0 °	40°	60°	0 °	30°	40°	45°	60°	0 °	30°	45°		
res													
Total No.		8	8	8	8	5	8	3	8	8	8	8	80
Inside	No.	8	8	7	7	4	6	1	4	4	4	4	57
trump.	(%)	100	100	88	88	80	75	33	50	50	50	50	71
curve	Mean	Total: 23			Total: 22				Total: 12				
limits	of	(<mark>96 %</mark>	0	(69 %)				(50 %)				
	source												
Inside	No.	8	8	4	5	3	4	1	3	3	4	3	46
1/1.5-	(%)	100	100	50	63	60	5 0	33	38	38	50	38	58
1.5	Mean	Total: 20				Total: 16				Total: 10			
limits	of	(83 %)				(50 %)				(42 %)			
	source												

Partici-	Dosemeter	Detector	Detector	Cover	Calibr.
Pant	category		thickness	thickness	Reference
Code			(mg/cm^2)	(mg/cm^2)	radiation
ET01	Finger	LiF:Mg,Ti	100	40	Cs-137
		TLD-100			
ET02	Finger	LiF-7 teflon	28	32	Co-60
ET03	Wrist	LiF:Mg,Ti	100	45	Co-60
		TLD-700			
ET04	Finger	LiF:Mg,Cu.P	10	0.5	Co-60
	_	(MCP-Ns)			
ET05	Finger	LiF:Mg,Cu.P	8	2	Cs-137
	_	(MCP-Ns)			
ET06	Finger	LiF:Mg,Cu.P	8	10	Cs-137
		(MCP-7s)			
ET07	Finger	LiF-grains	5	3.5	Sr/Y-90
		(75-106 μm)			
ET08	Wrist	LiF:Mg,Cu.P			Cs-137 ^(a)
		(1): MCP-Ns	(1): 8	(1): 1.5	
		(2): MCP-7	(2): 240	(2): 86	

Number of services taking part in the neutron test by country and by radiation type.

Country	Number of services	Country	Number of services
Austria	1	Greece	2
Switzerland	2	France	4
Germany	1	Finland	1
Denmark	1	Italy	1
Spain	1	United Kingdom	3

17 services

Radiation fields	Nominal H _{p,slab} (10) values	Radiation fields	Nominal H _{p,slab} (10) values
²⁵² Cf bare (0°)	0.1 mSv	²⁵² Cf bare (60°)	2 mSv
²⁵² Cf bare (0°)	0.75 mSv	Graphite thermalised AmBe (Sigma)	2 mSv
²⁵² Cf bare (0°)	3 mSv		
²⁵² Cf bare (30°)	2 mSv	CANEL + assembly	2, 3, 4 mSv

Main characteristics of the radiation fields.

- <u>NA</u>, albedo dosemeters, mainly: (i) TLD lithium 6 based, (ii) photographic films behind cadmium converter.
- NH, high energy neutron dosemeters, mainly: (i) NTA emulsions (n.b. thermal neutron detection can be done through n,p reaction), (ii) track etch detector with proton recoil radiators e.g. polyethylene or tissue equivalent material.
- NS, multi-element dosemeters in which one detector type, usually track etch or TLD, plus more than one converter or filter to cover the widest possible part of the neutron energy range.
- ^o <u>NM</u>, multi-element dosemeters in which at least two different detector types, for instance a film badge and a NTA emulsion with one or more converters or filters, are used together to cover the

EURADOS

The value of the correction factor is derived from the dosemeter reading

The value of the correction factor is derived from specific work place radiation field information

Fast neutron sources (for example americium-beryllium)

Californium 252 moderated with heavy water sphere 30 cm diameter.

Use of a normalisation factor based on calibration plus workplace field response characteristics.

Use of different correction factors for different work place fields.

For 10 services, additional information on the neutron spectra are needed to derive personal dose equivalent

7 services claimed to be able to derive personal dose equivalent without a priori knowledge of the radiation field.

Corrected Results

Overall, for uncorrected results, 34% of the results lie outside the limits of the trumpet curve, 47% lie outside the interval 1/1.5 to 1.5.

For corrected results, this trend seems to be softened by the use of a correction factor or special algorithm but the corrected results for californium irradiation with normal incidence are not as good. As a result, about the same proportion of results lie outside the limits, 33% for the trumpets curves and 44% for the interval 1/1.5 to 1.5.

	NA	NH	NS	NM	Total
[1/5;1.5]	-	-	-	-	-
Trumpet curves	NA4	-	-	-	1
(H0=0.085)					
[~0.5 ; ~1.5]	NA4	NH2	NS2	-	3
[~0.5 ; ~2]	NA4	NH2	NS2 - NS4	NM2	5
[~0.5 ; ~2]	NA4 – NA2	NH2 - NH1	NS2 - NS4	NM2	7
without bare Cf (0.1					-
mSv)					
Total	2	2	2	1	

EURADOS

The need to introduce into national legislation the requirement of the Council Directive 96/29/EURATOM⁽¹⁾ has stimulated the examination and revision of procedures. The information collected has been made easily and widely available, and it is considered that this should assist the implementation of new requirements and help towards their harmonisation, with the possibility of some convergence of procedures

Not all the dosimetric services who responded to the questionnaire sent out by the action group used the operational quantity personal dose equivalent: the information contained in the report, including the discussion of dosemeter design, may assist them in doing so. The study showed that in spite of their increased introduction in recent years, formal quality assurance programmes are not general practice

The results of the trial performance tests show that many dosimetric services for photons (particularly) and beta particles can meet, or should be able to meet proposed requirements for dosimetric accuracy, but some relaxation may be required for neutron dosimetric services. Examination of the reported results together with the details of dosemeter design should assist in improvements where necessary

The EURADOS Action Group 'Harmonisation and dosimetric quality assurance in individual monitoring for external radiation' recommends that to assist harmonisation, it would be helpful if there were periodic performance tests or inter-comparison exercises within the European Union and Switzerland. Such tests would serve as a means to assess the dosimetric quality of individual dosimetry measurements and to harmonise quality control

Acknowledgements

EURADOS are grateful to the dosimetric services who took part in the test and those who provided information on their routine dosimetry procedures. The work of the action group members involved considerable liaison with colleagues in the dosimetry, metrology and regulatory communities in their respective countries. Their very significant contribution to the content of the three sub-group reports is gratefully acknowledged

BetaTLD whole body dosemeters with small detector/filter thickness

1. KSR-Seminar: Personendosimetrie in Europa

17. Januar 2001

1. KSR-Seminar: Personendosimetrie in Europa

Stand der Personendosimetrie in der Schweiz im Vergleich zur Europäischen Union

Christian Wernli, PSI

Gesetzliche Grundlagen

Schweiz

- Strahlenschutzgesetz (StSG) vom 22. 3. 1991
- Strahlenschutzverordnung (StSV) vom 22. 5. 1994
- Dosimetrieverordnung (DoV) vom 7. 10. 1999

EU

Richtlinie 96/29 vom 13. Mai 1996 und verschiedene nationale Gesetzgebungen

Rechtliche Form der Dosimetriestellen

	Anzahl Länder	EU mit	СН
	ja	nein	
Anerkennung Dos. stellen	11	4	ja
Neutronendosimeter	8	7	ja
Anerkennung Inkor- porationsüberwachung	3	12	ja

Anzahl Dosimetriestellen

EU: ca. 200 (Mittel 6'000 Personen)

CH: 10 (Mittel 6'000 Personen)

Anzahl beruflich strahlenexponierte Personen

EU: 1.2 Millionen (0.4 % der Bevölkerung)

CH: 62'000 (0.9 % der Bevölkerung)

Nationales Dosisregister

Anzahl Länder mit Dosisregister: 12 (+ CH)

Anzahl Länder ohne Dosisregister: 3

Messgrössen für Photonen

Anzahl Länder

 $H_p(0.07)$ und $H_p(10)$ 5(+ CH) $H_p(10)$ 6 H_x 2 H_{MADE} 1 K_a, D_t 1

 Empfehlung der Expertengruppe
Meldung an ZDR: Immer H_p(0.07) und H_p(10)

H_p(0.07) kann gleich H_p(10) gesetzt werden, falls Unterschied gering

Messung beider Grössen anstreben
Dosimetriesysteme

	% EU	% CH
Photonen		
TLD	41	90
Film	56	10
Andere	3	-
Neutronen		
NTA Film	41	80
Albedo	41	-
Track etch	18	20

Anerkannte Personendosimeter CH

Auditierte QM Systeme

Anzahl EU Anzahl CH

7

4

Akkreditiert

ISO Zertifiziert

Ergebnisse der Vergleichsmessung 2000

Dosisstatistik				
mSv	EU 1995	CH 1995	CH 1999	
0 - 1	682'515	58'649	60'686	
1 – 5	227'857	1'783	1'543	
5 – 15	13'762	452	280	
15 – 50	2'989	7	2	
> 50	97			

Publikationen der Expertengruppe

Annual Report 1998 Dosimetry of the radiation workers in Switzerland

Jahresbericht 1998 Dosimetrie der beruflich strahlenexponierten Personen in der Schweiz

Rapport annuel 1998 Dosimétrie des personnes exposées aux radiations dans l'exercice de leur profession en Suisse

http://www.admin.ch/bag/strahlen/eks/d/dosint98.pdf

WHO/IARC Studie (BAG)

Grosse internationale epidemiologische Studie im Bereich Kernenergie (International Study of Cancer Risk among Nuclear Industry Workers)
Insgesamt rund 600'000 erfasste Personen
Rund 2000 Personen aus der Schweiz
Erste Ergebnisse Sommer 2001

Umsetzung DoV

 Anzahl Gesuche für Anerkennung als Inkorporationsmessstelle: 8 (?)
 Provisorische Anerkennung einer Messstelle auf den 01.01.01
 Anzahl Anträge für Durchführung von Triagemessungen: 4 (?)

Anzahl Freigaben/Bewilligungen: 4 (?)

DIS Dosimeter und Leser

Aktueller Stand CH

 EU Richtlinie vom 13. Mai 1996 in der Schweiz weitgehend erfüllt *)
 Erste Inkorporationsmessstelle anerkannt
 Erstes elektronisches System (DIS-1) anerkannt

 * Air-Crew Dosimetry nicht auf dem Stand der EU-Anforderungen, Erfüllung StSV in Abklärung

1. KSR-Seminar: Personendosimetrie in Europa

Entwicklung der Kollektivdosis

Anzahl beruflich strahlenexponierte Personen

