

Literature screening report

COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (9)

Report submission date:	30.11.2021
-------------------------	------------

Responsible authors:	Sabina Rodriguez Velásquez* A,B
Authors contributed equally	Gabriela Guizzo Dri A,B
	Camille Beatrice Gaza Valera* A,B
Co-authors/	Muaamar Al Gobari B,C
collaborators:	Sara Botero-Mesa A,B
	Olivia Keiser ^A
Affiliation:	A Institute of Global Health, University of Geneva, Switzerland
	^B Association Actions en Santé Publique (ASP) & The GRAPH Network,
	^c Department of Occupational and Environmental Health, Center for
	Primary Care and Public Health (Unisanté), University of Lausanne,
	Epalinges-Lausanne, Switzerland.

Coordination contact:	Jorgen Bauwens (SSPH+)	
-----------------------	------------------------	--

Abstract

This report focuses on the World Health Organization's (WHO) Emergency Use Listing (EUL) of authorized vaccines as of 26 November 2021. Bharat Biotech's new vaccine COVAXIN/ BBV152 received WHO EUL authorisation on 3 November 2021 leading to seven vaccines being now authorised for emergency use: BNT162b2/COMIRNATY (Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA), Vaxzevria/ChAdOx1 nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP-CorV (China), Sinovac/CoronaVac (China), and COVAXIN/BBV152 (Bharat Biotech, India)]. This report provides a condensed summary concerning vaccine efficacy, safety, protection against variants, and further important information for each vaccine, in the form of a synoptic table. The information and data in this synoptic table was extracted from phase III clinical trials and observational studies. This report focuses on the latest data on vaccine effectiveness, vaccine induced immunity, breakthrough infections, and booster doses.

Content

Abstract	1
Content	2
Preamble	3
Background	3
Methodology	4
Results	4
Latest Data on Vaccine Effectiveness	4
Vaccine Induced Immune Responses	6
Breakthrough Infections and SARS-CoV-2 Transmission	7
Booster Dose	8
Synoptic Table	10
General Vaccine Information	10
Effectiveness against any Sars-Cov-2 Infection	12
Effectiveness against Variants	17
Effectiveness against Hospitalization	21
Safety and Adverse Events	37
Children Vaccination	44
Heterologous Vaccination	48
Booster Doses	52
Heterologous Booster Doses	60
Annexes	64
Further Information	64
Efficacy	66
Efficacy Against Variants	69
Phase III Trials Results	71
Phase III Trial Other	73
Vaccine Production Sites	74
References	77

Preamble

A large number of scientific publications become available on a daily basis, reflecting the rapid development of knowledge and progress of science on COVID-19 related issues. Leading authorities should base decisions or policies on this knowledge; hence they need to master the actual state of this knowledge. Due to the large number of publications shared daily, decision makers heavily depend on accurate summaries of these publications, in the different public health domains. Therefore, the authors of this report were mandated by the Swiss School of Public Health plus (SSPH+), upon request of the Federal Office of Public Health (FOPH), to inform the FOPH on recent findings from the literature.

Background

According to the current global data on vaccinations, 53.8% of the world populations, of which only 5.5% of people in low-income countries, have received at least one dose of a marketed COVID-19 vaccine as of 26 November 2021¹. Currently, seven vaccines [namely, Comirnaty/BNT162b2 (Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/mRNA-1273 (Moderna, USA), Vaxzevria/ChAdOx1_nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP-CorV (China), Sinovac/CoronaVac (China), and COVAXIN/BBV152 (Bharat Biotech, India)] were assessed and granted an authorization by WHO as of 26 November 2021. Articles regarding the latest data on vaccine effectiveness, vaccine induced immune response, breakthrough infections and transmission, and booster doses were prioritized during the literature search and are the latest additions to the table. Data from clinical trials and observational studies for the seven EUL-accepted vaccines and the vaccine candidate Novavax regarding these highlighted topics were summarized and can be found in the synoptic table below.

¹ https://ourworldindata.org/covid-vaccinations (accessed on 26.11.2021).

Methodology

We screened the data for the EUL-accepted vaccines and the vaccine candidate Novavax as of 26 November 2021 from PubMed, Embase, medRxiv, bioRxiv, Cochrane, and clinical trials databases such as ClinicalTrials and WHO Trial Registry. The methods used were reported previously and can be found in prior reports².

Results

As phase III COVID-19 vaccine trials confirmed vaccine efficacy and safety for all seven WHO EUL authorized vaccines, and as the share of fully vaccinated people begin to increase across countries, it is important to assess vaccine effectiveness in real-world conditions, especially in relation to evolving variants of concern (VOC).

Latest Data on Vaccine Effectiveness

No significant updates regarding vaccine effectiveness were identified since the previous synoptic table this month. In a recent study, final analyses of the blinded phase of Moderna's mRNA1273 vaccine efficacy and safety further support existing evidence of its effectiveness against COVID-19 infection and severe disease. From the clinical trial's 30,315 subjects, there were 55 confirmed COVID-19 cases among individuals who received mRNA-1273 compared with 744 COVID-19 cases among individuals in the placebo group; resulting in vaccine efficacy preventing COVID-19 infection at 93.2% (95% CI, 91.0 to 94.8).³ In terms of prevention against severe disease, vaccine efficacy was 98.2% (95% CI, 92.8 to 99.6) while vaccine efficacy against asymptomatic infection 14-days after dose completion was 63.0% (95% CI,

³ Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinding Phase. New England Medical Journal of Medicine. https://www.nejm.org/doi/10.1056/NEJMoa2113017

² COVID-19 vaccines: efficacy and safety (Literature Review 1). Swiss School of Public Health. https://www.bag.admin.ch/dam/bag/de/dokumente/mt/k-und-i/aktuelle-ausbrueche-pandemien/2019-nCoV/Literaturrecherchen/literaturrecherchen_covid-19-impfstoffe_20210209.pdf.download.pdf/20210209_Literaturrecherchen_Covid-19-Impfstoffe_EN.pdf

56.6 to 68.5).⁴ Results were consistent across age, ethnicity, and individuals with coexisting conditions.

Alternatively, a national cohort study conducted in Norway from January to September 2021 investigated vaccine effectiveness by age and product-specific vaccine (homologous and heterologous regimens) effectiveness against various COVID-19 disease outcomes. Overall, full vaccine dosages were found to provide better protection when compared with partial doses. Resulting effectiveness against any COVID-19 infection for those fully vaccinated was at 72.1% (95% CI, 71.2-73.0), 95.5% (95% CI 92.6-97.2) against ICU hospitalization, and 88.0% (95% CI 82.5-91.8) against death.⁵ Furthermore, when comparing specific vaccine regimens among fully vaccinated, heterologous mRNA vaccines demonstrated the highest protection with effectiveness against infection at 84.7% (95% CI 83.1-86.1) followed by homologous regimens; mRNA-1273 and BNT162b2 at 78.3% (95% CI 76.8-79.7) and 69.7% (95% CI 68.6-70.8) respectively, and 60.7% (95% CI 57.5-63.6) for ChADox nCOV-19.6 With regard to the newly WHO EUL approved vaccine BBV152/Covaxin, data in a recent preprint from *The Lancet* show that during dominance of the Delta variant, Covaxin demonstrated, statistically, relatively good effectiveness against severe COVID-19 in India. In this multi-centric, hospital-based case-control study conducted on Covaxin and Covishield effectiveness, results of the investigation illustrated that full dose Covaxin effectiveness was at 69% (95% CI, 54.0-79.0) for the Delta variant plus its sub-lineages, while Covishield had an effectiveness of 80% (95% CI, 73.0-86.0).⁷

Fifectiveness of BBV152/Covaxin and AZD1222/Covishield Vaccines Against Severe COVID-19 and B.1.617.2/Delta Variant in India, 2021: A Multi-Centric Hospital-Based Case-Control Study. *Preprint with The Lancet*. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955739

⁴ Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinding Phase. New England Medical Journal of Medicine. https://www.nejm.org/doi/10.1056/NEJMoa2113017

⁵ Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalization among adults in Norway: a national cohort study, January – September 2021. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.11.24.21266401v1

⁶ Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalization among adults in Norway: a national cohort study, January – September 2021. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.11.24.21266401v1

Vaccine Induced Immune Responses

A recent study compared the kinetic of humoral and cellular immune responses elicited by Pfizer-BioNTech's BNT162b2 vaccine (2-dose schedule), Moderna's mRNA-1273 vaccine (2dose schedule), and Janssen's Ad26.COV2.S vaccine (1-dose schedule). The study followed participants from peak immunity (2-4 weeks post full immunization) until to 8 months postvaccination⁸. Similar to vaccine effectiveness data outcomes, Moderna's mRNA-1273 vaccine demonstrated higher median neutralizing antibody (NAb) titres (5,848), pseudovirus neutralizing antibody tires (1,569), and receptor-binding domain (RBD) specific binding antibody titre (25,677) than recipients of the BNT162b2 vaccine (NAb titre: 1,789; pseudovirus NAb titre: 700; RBD titre: 21,564) at peak immunity. Janssen's Ad26.COV2 induced significantly lower median titres compared to both mRNA vaccines (NAb titre: 146; pseudovirus NAb titre: 391; RBD titre: 1,361). While both mRNA vaccines' titres decreased over time, Ad26.COV2's titres did not. mRNA-1273 titres declined by a factor of 44 (NAb titre), 6 (pseudovirus NAb titre), and 17 (RBD titre), while BNT162b2 titres decreased by a factor of 34, 4, and 29, respectively9. All three vaccines demonstrated "broad cross-reactivity against SARS-CoV-2 variants" and had CD8+ T cell responses of 0.017%, 0.016%, and 0.12% 8 months after full immunization for the mRNA-1273, BNT162b2, and Ad26.COV2 vaccines, respectively¹⁰.

A Colombian surveillance study evaluated the sensitivity of Pfizer-BioNTech's BNT162b2 vaccine to neutralize three SARS-CoV-2 strains in Colombia: Mu (B.1.621; Variant of Interest), Gamma (P1; Variant of Concern) and the B.1.111 lineage ("lacks genetic markers associated with greater virulence")¹¹. While the BNT162b2 vaccine demonstrated robust neutralization against both the B.1.111 lineage and P.1 strain, albeit the Gamma variant titre (**GMT 65.2 TCID**₅₀) was **3.4-fold lower** than the geometric mean titre of the B.1.111 lineage (**GMT 224.2 TCID**₅₀), the Mu variant escaped BNT162b2-elicited neutralization (**11/14 (78.5%) of serum**

¹¹ Low neutralizing antibody titers against the Mu variant of SARS-CoV-2 in BNT162b2 vaccinated individuals. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.11.19.21266552v1.full

⁸ Differential kinetics of immune responses elicited by COVID-19 vaccines. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMc2115596

⁹ Differential kinetics of immune responses elicited by COVID-19 vaccines. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMc2115596

¹⁰ Differential kinetics of immune responses elicited by COVID-19 vaccines. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMc2115596

samples was not able to neutralize SARS-CoV-2). The mean geometric mean titre against B.1.621 was 41- and 20-fold lower (*P*<0.0001) compared to B.1.111 and P.1 lineages¹².

Breakthrough Infections and SARS-CoV-2 Transmission

While all WHO EUL authorised vaccines have demonstrated to be effective against severe SARS-CoV-2 infections and hospitalization, the combined effects of low vaccination rates¹³, waning vaccine immunity, and the emergence of the Delta variant has led to increased cases of SARS-CoV-2 breakthrough infections, raising concerns among the general population. Breakthrough infections typically have higher viral loads, prolonged PCR positivity, and demonstrate lower levels of vaccine induced NAbs^{14,15}. For example, symptomatic hospital staff in Ho Chi Minh City (all vaccinated with the ChAdOx1 nCoV-19) demonstrated higher viral loads (median IQR: 16.5) relative to asymptomatic cases (median viral load IQR: 30.8)¹⁶. Additionally, breakthrough infections were characterised by having lower levels of neutralizing antibodies after vaccination (median % of NAb inhibition: 69.4) and when positive for SARS-CoV-2 (median % of NAb inhibition: 59.4) relative to control participants (median % of NAb inhibition after vaccination: 91.3; median % of NAb inhibition at 7-8 weeks uninfected control: 91.1). The authors highlighted that "the absence of correlation between neutralizing antibody levels and peak viral loads suggested that vaccine might not lower the transmission potential of breakthrough infection cases"17. The authors' claim is corroborated by a recently published serological study that confirmed SARS-CoV-2 transmission is correlated to high viral loads, which is uncorrelated to vaccination status and/or the presence of COVID-19 symptoms¹⁸.

https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2008776

¹² Low neutralizing antibody titers against the Mu variant of SARS-CoV-2 in BNT162b2 vaccinated individuals. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.11.19.21266552v1.full

¹³ Community-level evidence for SARS-CoV-2 vaccine protection of unvaccinated individuals. *Nature Medicine*. https://www.nature.com/articles/s41591-021-01407-5

¹⁴ An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam. *The Lancet*. https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00423-5/fulltext

¹⁵ Investigating SARS-CoV-2 breakthrough infections per variant and vaccine type. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.11.22.21266676v1.full.pdf</u>

¹⁶ An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam. *The Lancet*. https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00423-5/fulltext

¹⁷ An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam. *The Lancet*. https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00423-5/fulltext

¹⁸ Isolation of 4000 SARS-CoV-2 shows that contagiousness is associated with viral load, not vaccine or symptomatic status. *Emerging Microbes & Infections*.

Despite the concerns surrounding breakthrough cases, infections are clinically milder¹⁹, are more likely to recover swiftly from illness than unvaccinated persons^{20,21}, and are still less likely to infect others^{22,23}. Studies are recommending continuing the implementation of social distancing and non-pharmaceutical measures in order to mitigate pandemic effects.

Booster Dose

As evidence on the efficacy, safety, effectiveness, and immunogenicity of third (booster) doses becomes available, many countries are continuing to expand their recommendations for booster shots and are slowly beginning to administer third doses to all adults, and sometimes adolescents, who have received their full COVID-19 vaccine jabs at least six months ago. Recently, on 23 November 2021, Switzerland joined other countries in approving the booster to its general population by approving the extension of the Pfizer-BioNTech booster dose to everyone aged 16 years and older²⁴. This decision was supported by the published data, made available by Pfizer-BioNTech, on the efficacy and safety of the BNT162b2 booster doses on 10,000 participants 16 years of age and older who completed a two-dose series of the BNT162b2 vaccine²⁵. Based on those results, the vaccine efficacy of the booster dose against symptomatic COVID-19 in participants without evidence of prior infection was 95.3% (95% CI, 89.5-97.9) and **96.5%** (95% CI, 89.3-99.3) for participants aged 16-55 years of age and **93.1%** (95% CI, 78.4-98.6) for participants aged over 55 years²⁵. Additionally, the booster dose demonstrated to be safe and well tolerated. On top being efficacious in clinical trials, booster doses have also shown to have a high effectiveness and significantly increase the immune response of recipients. During a test-negative case-control study, the vaccines effectiveness

²⁵ Efficacy & Safety of BNT162b2 booster – C4591031 2 month interim analysis [press release]. *Pfizer and BioNTech, CDC*. https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-11-19/02-COVID-Perez-508.pdf.

¹⁹ Vaccination after prior COVID-19 infection: Implications for dose sparing and booster shots. *EBioMedicine*. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00379-0/fulltext

²⁰ Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. *The Lancet*. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02183-8/fulltext

²¹ Understanding breakthrough infections following mRNA SARS-CoV-2 vaccination. *JAMA*. https://jamanetwork.com/journals/jama/fullarticle/2786040

²² Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: a multi-center cohort study. bioRXiv. https://www.medrxiv.org/content/10.1101/2021.07.28.21261295v1.full?origin=app

²³ Understanding breakthrough infections following mRNA SARS-CoV-2 vaccination. *JAMA Network*. https://jamanetwork.com/journals/jama/fullarticle/2786040

²⁴ COVID-19 vaccine from Pfizer-BioNTech: Swissmedic approves he extension of the booster dose to everyone aged 16 years and over. Swissmedic. https://www.swissmedic.ch/swissmedic/en/home/news/coronavirus-covid-19/covid-19-impfstoff-pfizer-biontech-boosterdosis.html

against symptomatic COVID-19 of the booster dose BNT162b2 in individuals aged 50 years and over who received the ChAdOx1-S or BNT162b2 in the UK was estimated. Based on the results, an effectiveness of 87.4% (95% CI, 84.9-89.4) for individuals who received the ChAdOx1-S as their full jab and an effectiveness of 84.4% (95% CI, 82.8-85.8) for individuals who received the BNT162b2 as their full jab was calculated²⁶. Additionally, when estimating the vaccine effectiveness against symptomatic COVID-19 of unvaccinated individuals and individuals who received the booster dose from 14 days after vaccination, an absolute effectiveness of 93.1% (95% CI, 91.7-94.3) after receiving ChAdOx1-S as the primary course and 94.0% (95% CI 93.4-94.6) after receiving BNT162b2 as the primary course were estimated²⁶.

Further (biweekly) updated data on the seven WHO EUL vaccines and the vaccine candidate Novavax are synthesized in the synoptic table and new data has been highlighted in yellow

²⁶ Effectiveness of BNT162b2 (Comirnaty, Pfizer-BioNTech) COVID-19 booster vaccine against covid-19 related symptoms in England: test negative case-control study. medRxiv. https://www.medrxiv.org/content/10.1101/2021.11.15.21266341v1

Synoptic Table

Synoptic table about SARS-CoV-2 vaccines accepted in the WHO's Emergency Use Listing and Novavax Vaccine (as of 26 November 2021)

								AWAITING APPROVAL FROM WHO EUL
	BNT162b2/ COMIRNATY (Pfizer-BioNTech, USA)	Spikevax/ Moderna COVID- 19 Vaccine/ mRNA-1273 (Moderna, USA)	Vaxzevria/ ChAdOx1 nCoV- 19/ AZD1222/ Covishield (AstraZeneca/Oxf ord, UK, India)	Janssen COVID- 19 vaccine/Johnson & Johnson (Janssen, USA)	BBIBP-CorV, (Sinopharm, China)	CoronaVac (Sinovac, China)	COVAXIN / BBV152 (Bharat Biotech, India)	Novavax/ NVX- CoV2373
			GENER	AL VACCINE INFOR	MATION			
Platform	mRNA-based vaccine	mRNA-based vaccine	Non-replicating vector-based vaccine	Non-replicating vector-based vaccine	Inactivated virus (Vero cell)	Inactivated virus (Vero cell)	Whole-virion inactivated Vero cell	Recombinant protein (nanoparticle) vaccine with Matrix-M adjuvant
Dose and frequency	2 doses, 21 days apart	2 doses, 28 days apart	2 doses, 4-12 weeks apart	1 dose, once [Phase III trials currently testing 2- dose regime, 56 days apart]i	2 doses, 21 days apart	2 doses, 14 days apart	2 doses, 28 days apart	2 doses, 21 days apart

ⁱ Johnson & Johnson Announces Real-World Evidence and Phase 3 Data Confirming Strong and Long-Lasting Protection of Single-Shot COVID-19 Vaccine in the U.S. *Johnson* & *Johnson*. https://www.jnj.com/johnson-johnson-announces-real-world-evidence-and-phase-3-data-confirming-strong-and-long-lasting-protection-of-single-shot-covid-19-vaccine-in-the-u-s

SSP	Н	+ swiss

Target population	12 years old and over	12 years old and over	18 years old and over	18 years old and over	18 years old and over	18 years old and over	18 years old and over	18 years old and over
Storage conditions	2°C to 8 °C (for 1 month)	2°C to 8 °C (for 1 month)	2°C until 8 °C	2°C to 8 °C (for 3 months)	2°C until 8 °C	2°C until 8 °C	2°C until 8 °C	2°C to 8 °C
Approving authorities	FDA (11.12.20) ⁱⁱ ; EMA (21.12.20); WHO EUL (31.12.20); and list of 103 countries (including Switzerland – approved on 20.12.20)	FDA (18.12.20); EMA (06.01.21); WHO EUL (30.04.21); and list of 76 countries (including Switzerland – approved 12.01.21)	FDA (awaiting on approval); EMA (29.01.21); WHO EUL (15.02.21); and list of 124 countries (Switzerland awaiting on approval)	FDA (27.02.21); EMA (11.03.21), WHO EUL (12.03.21), and list of 75 countries (including Switzerland – approved 22.03.21)	WHO EUL (07.05.21); and list of 68 countries (e.g., Argentina, Bahrain, Brazil, China, Indonesia, United Arab Emirates, Zimbabwe)	WHO EUL (01.06.21), and list of 42 countries (e.g., Albania, Chile, Egypt, Hong Kong, Malaysia, Tunisia, Turkey, Ukraine)	WHO EUL (03.11.21) and list of 9 countries (Guyana, Inidia, Iran, Mauritius, Mexico, Nepal, Paraguay, Philippines & Zimbabwe)	Waiting on approval (Not-yet- approved by countries or WHO for emergency use)
Booster shot approving authorities	EMA approved booster for those aged 18 and above, 6 months after the 2 nd dose ¹ FDA approved booster for those ages 16 and above, 6 months after the 2 nd dose ⁱⁱⁱ	EMA authorised booster dose for immunocompromi sed individualsiv FDA approved third booster dose for individuals >65 and high-risk individuals, 6 months after the 2 nd dosev	-	-	-	-	-	-

ii Pfizer-BioNTech's Comirnaty Vaccine received full FDA approval on 23 August 2021 for people age 16 and above, moving it beyond emergency use status. https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine

FDA authorizes booster dose of Pfizer-BioNTech COVID-19 vaccine for certain populations. FDA News Release. https://www.fda.gov/news-events/press-announcements/fda-authorizes-booster-dose-pfizer-biontech-covid-19-vaccine-certain-populations

^{iv} Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. *European Medicines Agency*. https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters

F.D.A. Panel recommends booster for many Moderna vaccine recipients. The New York Times. https://www.nytimes.com/2021/10/14/us/politics/fda-moderna-vaccine-boosters.html

EFFECTIVENESS AGAINST ANY SARS-COV-2 INFECTION

		EFFECTIVENESS	AGAINST ANT SAK	S-COV-Z INFECTIO	VIN		
Effectiveness single dose	Against any Against SARS-CoV-2 infection: 60% (95% CI, 50% CI, 50	7- er 31.4% (95% CI, 25.7-36.7; Norway) [Jan- Sep] ⁸ 6- Symptomatic disease: 67% ¹² 49% (95% CI, 32.0-62.0; India) [Apr-Jun] ¹³ 41% (95% CI, 34- 48; Spain) [Apr- Aug] ⁵ 51% (pooled meta-analysis) ⁶ 46% (95% CI, 37- 54; Spain) [Apr- Aug] ⁵ Individuals ≥ 70: Symptomatic	Against SARS- CoV-2 infection: 50.6% (95% CI, 14.0-74.0) [<2 weeks after dose]; 76.7% (95% CI, 30.3-95.3) [>2 weeks after dose] ¹⁴ ; 79% (95% CI, 77- 80) (when corrected for under-recording, VE was estimated to be 69% (95% CI, 67-71) ¹⁵ . 71% (95% CI, 56- 81) [11 March – 15 August] ¹⁶ . 61% (95% CI, 29- 84) [January- June] ¹⁷ 50.9% (95% CI, 35.1-63.0) [June- September; Brazil] ¹⁸	Partial protection ²² .xii	15.5% for preventing COVID-19; 37.4% for preventing hospitalization; 44.7% for preventing admission to the ICU; and 45.7% for preventing of COVID-19 related death ²³ . 18.6% (95% CI, 17.6-19.6) against SARS-CoV-2 infection, 28.1% (95% CI, 26.3-29.9) against hospitalization, 28.5% (95% CI, 25.4-31.4) against ICU admission, and 29.4% (95% CI, 26.7.3-31.9) against death [January-Aprill ²⁴	Against symptomatic disease: 45% (95% CI,6.0-68.0; India) [Apr-Jun] ¹³ 40% (95% CI, -21-71; India) less than 7 days after first dose [April-May] ²⁵ 1% (95% CI, -30-25); India) at least 7 days after first dose [April-May] ²⁵ -1% (95% CI, -51-33; India) at least 21 days after first dose [April-May] ²⁵	Ongoing studies in South Africa ²⁶ and the United Kingdom ²⁷

vi Results do not disaggregate between mRNA vaccines, BNT162b2 and mRNA-1273.

xii Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results.

viii mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

 $^{^{\}mathrm{ix}}$ Results do not disaggregate between mRNA vaccines, BNT162b2 and mRNA-1273.

)	S	P	Н	+

66% (95% CI, 60- 71; Spain) [Apr- Aug] ⁵ Individuals ≥ 70: Symptomatic disease: 64% (95% CI, 46-78; disease: 58% ⁹ . Hospitalization risk reduced by 35-45% ⁹ . Hospitalization risk reduced by 35-45% ⁹ . Formula is a second risk reduced by 35-45% ⁹ . Symptomatic disease: 64% (95% CI, 46-78; (95% CI, 46-79.9; US) (Feb-Jul] ¹⁹ Symptomatic disease: Symptomatic disease: 45% ⁹ . Formula is reduced by 35-45% ⁹ . Symptomatic disease: 54% (95% CI, 45- 62; Spain) [Apr-	hospitalization [1 January-22 June ¹⁰ . vii 75% (95% CI, 65- 82) against severe critical COVID- 19 ²⁰ 66.1% against moderate to	71; Spain) [Apr-Aug] ⁵ Individuals ≥ 70: Symptomatic disease: 58% ⁹ . Hospitalization risk reduced by 35-45% ⁹ . Risk of death reduced by 54% ⁹ . Individuals ≥ 50: ≥14 days after first dose: 54% (95% CI, 47-61) effectiveness against hospitalization [1 January-22	Symptomatic disease: 64% (95% CI, 46-78; >2 weeks after dose) ¹¹ .×	risk reduced by	42.0-57.0; Spain) [Apr-Aug] ⁵ 73.6% (95% CI, 65.9-79.9; US) [Feb-Jul] ¹⁹ Symptomatic disease: 54% (95% CI, 45-62; Spain) [Apr-Aug] ⁵ 81% (95% CI, 79-84) for preventing hospitalization when corrected for under-recording, VE was estimated to be 73% (95% CI, 69-76) ¹⁵ . 75% (95% CI, 65-82) against severe critical COVID-19 ²⁰ 66.1% against		
45%9. ≥14 days after 62; Spain) [Apr-		Risk of death reduced by 54% ⁹ . Individuals ≥50: ≥14 days after first dose: 54% (95% CI, 47-61) effectiveness	first dose: 54% (95% CI, 47-61) effectiveness against hospitalization [1 January-22		81% (95% CI, 79-84) for preventing hospitalization when corrected for under-recording, VE was estimated		

vii mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

 $^{^{\}rm x}$ mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

xi mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

S	P	Н	+

				COVID-19 cases after 28 days [ENSEMBLE study; Sep 2020-Nov 2021) ²¹ 85.4% against severe COVID-19 cases after 28 days [ENSEMBLE study; Sep 2020-Nov 2021) ²¹ Individuals ≥50: 68% (95% CI, 50-79) ¹⁰ .				
Effectiveness of two doses	SARS-Cov-2 infection: 85%². 94.6%²8. 94.5%²9. 76% (95% CI, 69- 81) [Jan-Jul]³0. 88.8% (95% CI, 84.6-91.8) [Dec 2020-May]³ 74% (95% CI, 72- 76) [Jan-Jun]¹7	SARS-Cov-2 infection: 100% ²⁸ . 86% (95% CI, 81- 90.6) [January- July] ³⁰ . 96.3% (95% CI, 91.3-98.4) [December-May] ³	Asymptomatic efficacy: 61.9% ³⁷ SARS-CoV-2 infection: 53% (95% CI, 12- 84) [January-June] ¹⁷ 27% (95% CI, 17- 37) [4 months	Not Applicable (one dose schedule)	Partial protection ²² .xx	65.9% for preventing COVID-19; 87.5% for preventing hospitalization; 90.3% for preventing ICU admission; and 86.3% for preventing COVID-19 related death ²³ .	Against symptomatic disease: 71% (95% CI, 41- 85; India) [Apr- Jun] ¹³ Effectiveness of full vaccination: 69% (95% CI; 54- 79; India) [May - July 2021] ³⁸	Ongoing studies in South Africa ²⁶ and the United Kingdom ²⁷ 89.7% protection against SARS-CoV-2 infection (95% CI, 80.2-94.6; United Kingdom) ⁴⁰

xx Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results. Death reports on fully vaccinated doctors (10 cases during June 2021 in Indonesia). It may be related to new variants [media report]. Indonesian Covid deaths add to questions over Sinovac vaccine. *The Guardian* [press release]. https://www.theguardian.com/world/2021/jun/28/indonesian-covid-deaths-add-to-questions-over-sinovac-vaccine

77.5% (95% CI, 76.4-78.6) [first month after second dose] ⁴ 47% (95% CI, 43-51) [5 months after second dose] ³¹ 56% (95% CI, 53-59) [4 months after second dose] ³² 69% (95% CI, 66-72; Spain) [Apr-Aug] ⁵ 88% (pooled meta-analysis) ⁶ 84% (95% CI, 40-96; Italy) [27 Dec 2020 – 24 Mar 2021] 14-21 days from the first dose and 95% (95% CI, 62-99; Italy) [27 Dec 2020 – 24 Mar 2021] at least 7 days from the second dose ³³ 95% (95% CI, 93%-96%; United States) [May to July 2021] ^{7xiii}	85% (95% CI, 80-90) [January-June] ¹⁷ 71% (95% CI, 68-74) [4 months after second dose] ³² 63% (95% CI, 44-76) [June-August] ³⁶ 82% (95% CI, 78-86; Spain) [Apr-Aug] ⁵ 80% (pooled meta-analysis) ⁶ 95% (95% CI, 93%-96%; United States) [May to July 2021] ^{7xvi} 78.2% (95% CI, 76.7-79.6; Norway) [Jan-Sep] ⁸ Symptomatic	after second dose] ³² 88% (95% CI, 79.0-94.0; India) [Apr-Jun] ¹³ 54.0% (95% CI, 48-60; Spain) [Apr-Aug] ⁵ 43.4% (95% CI, 4.4-66.5; Norway) [Jan-Sep] ⁸ Effectiveness of full vaccination: 80% (95% CI; 73-86; India) [May-July 2021] ³⁸ Symptomatic disease: 90% ¹² . 56% (95% CI, 48-63; Spain) [Apr-Aug] ⁵			52.7% (95% CI, 52.1-53.4) against SARS-CoV-2 infection, 72.8% (95% CI, 71.8-73.7) against hospitalization, 73.8% (95% CI, 72.2-75.2) against ICU admission, and 73.7% (95% CI, 72.3-75.0) against death [January-April] ²⁴ In pregnant women: 41% (95% CI, 27.1-52.2%; Brazil) against symptomatic COVID-19, 85% (95% CI, 59.5-94.8; Brazil) against severe COVID-19, and 75% (95% CI 27.9-91.2; Brazil) ³⁹	50% (95% CI, 33-62; India) 14 days after second dose [April-May] ²⁵ 47% (95% CI, 29-61; India) 14 days after second dose – excluding participants with previous SARS-CoV-2 infections [April-May] ²⁵ 46% (95% CI, 22-62; India) 28 days after second dose [April-May] ²⁵ 57% (95% CI, 21-76; India) 42 days after second dose [April-May] ²⁵	
---	--	--	--	--	---	--	--

xiii Results do not disaggregate between mRNA vaccines, BNT162b2 and mRNA-1273.

xvi Results do not disaggregate between mRNA vaccines, BNT162b2 and mRNA-1273.

SS	P	Н	+

		TOBLIC	LACTI		
69.7% (95% CI, 68.6-70.8; Norway) [Jan- Sep] ⁸ Symptomatic	(95% CI, 89-93; >2 weeks after dose) ^{11, xvii} 85% (95% CI, 80- 89; Spain) [Apr- Aug] ⁵				
<u>disease</u> : 72% (95% CI, 69- 75; Spain) [Apr-	<u>Asymptomatic</u>				
Aug] ⁵ Asymptomatic SARS-CoV-2	SARS-CoV-2 infection: 90.6% ³⁴ .xviii				
infection: 90.6% ³⁴ .xiv 73.1 (95% CI,	71% (95% CI, 61- 78) [January- August] ³⁶				
70.3-75.5) ⁴ <u>Hospitalization:</u>	Hospitalization: 91.6% (95% CI,				
85% (95% CI, 73-93) [January-July] ³⁰ . 88% (95% CI, 85-	81-97) [January- July] ³⁰ . 93% (95% CI, 91-				
91) [11 March – 15 August] ¹⁶ .	95) [11 March – 15 August) ¹⁶ .				
89% (95% CI, 87-91) for individuals ≥50 years [1	89% (95% CI, 87- 91) for individuals ≥50 years [1				

xiv Results do not disaggregate between BNT162b2 and mRNA-1273

xvii Results do not disaggregate between BNT162b2 and mRNA-1273.

xviii Results do not disaggregate between BNT162b2 and mRNA-1273

xv mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

xix mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

xxi Effectiveness data against the latest variant of interest (Mu) will be included in upcoming reports based on data availability.

SSP	Н	+

Alpha (B.1.1.7)	Single dose: 48.7% (95% CI, 45.5 to 51.7) ⁴¹ 66% (95% CI,64-68) ⁴² . 54.5% (95 CI, 50.4-58.3) ⁴³ Two doses: 93.7% (95% CI, 91.6 to 95.3) ⁴¹ 92% (95% CI, 90-93) ⁴⁴ . 89% (95% CI, 86-91) ⁴² . 78% (95% CI, 68-84) ⁴⁵ 84.4% (95 CI, 81.8-86.5) ⁴³	Single dose: 88.1% (95% CI, 83.7 to 91.5) ⁴⁶ 83% (95% CI, 80- 86) ⁴² . Two doses: 100% (95% CI, 91.8 to 100) ⁴⁶ 92% (95% CI, 86- 96) ⁴² . 98.4% (95% CI, 96.9-99.1) ⁴⁷	Single dose: 48.7% (95% CI 45.5 to 51.7) ⁴¹ 64% (95% CI, 60-68) ⁴² . Two doses: 74.5% (95% CI, 68.4 to 79.4) ⁴¹ 73% (95% CI, 66-78) ⁴⁴ . 79% (95% CI, 56-90) ⁴⁵ .	-	No published data	Two doses: Equally effective (~76%) in neutralizing D614G, B.1.1.7 and B.1.429 as the wild-type strain.	No available data	Ongoing studies in South Africa ²⁶ and the United Kingdom ²⁷ Post hoc analysis showed efficacy of 86.3% (95% CI, 71.3-93.5; United Kingdom) against B.1.1.7 variants and 96.4% (95% CI, 73.8-99.5; United Kingdom) against non-B.1.1.7 variants.40
Beta (1.351)	<u>Single dose:</u> 60% (95% CI, 52-67) ⁴² . <u>Two doses:</u> 84% (95% CI, 69-92) ⁴² .	Single dose: 61.3% (95% CI, 56.5 to 65.5) ⁴⁶ 77% (95% CI, 69- 92) ⁴² . Two doses: 96.4% (95% CI, 91.9 to 98.7) ⁴⁶	<u>Single dose:</u> 48% (95% CI, 28-63) ⁴² .	-	No published data	Neutralization capacity was decreased by factor 5.27 ⁴⁸ .	No available data	No available data

SSP	Н	+

Gamma (P.1)	Neutralization activity reduced by 3.3-fold ⁴⁹ .	No available data	No available data	No available data	No published data	Demonstrated 42% vaccine effectiveness in a setting with high P.1 transmission, in individuals aged 70 and above ⁵⁰ . 50.2% against P.1 (>14 days after 2 nd dose) ⁵¹ . Neutralization was decreased by factor 3.92 ⁴⁸ .	No available data	No available data
Delta (1.617.2)	Single dose: 30.7% (95% CI, 25.2 to 35.7) ⁴¹ ; 57% (95% CI, 50-63) ⁴⁵ 22.5% (95 CI, 17.0-27.4) ⁴³ Two doses: 88.0% (95% CI, 85.3 to 90.1) ⁴¹ ; 80% (95% CI, 77-83) ⁴⁵ 79% (95% CI,75-82) ⁴⁴ . 80% (95% CI, 77-83) ⁴⁵ 40.5% (95% CI, 8.7-61.2) ⁵² .	Single dose: 72% effective against symptomatic SARS-Cov-2 infection ⁵⁶ . ≥14 days after second dose: 76% (95% CI, 58- 87) ³⁰ . 94.5% (95% CI, 94.1-95) [2-9 weeks after second dose] ⁵³ . 50.6% (95% CI, 45.0-55.7) [among nursing home residents] ⁵⁴ .	Single dose: 30.7% (95% CI 25.2 to 35.7) ⁴¹ 73% (95% CI, 64- 80; India) [May – July 2021] ³⁸ Two doses: 67.0% (95% CI, 61.3 to 71.8) ⁴¹ 67% (95% CI, 62- 71) ⁴⁵ . 60% (95% CI, 53- 66) ⁴⁴ . 66.7% (95% CI, 45-49.6) [2-9 weeks after second dose] ⁵³ .	78% (95% CI, 73-82) against SARS-CoV-2 infection ¹⁵ . 3% (95% CI, -7-12) [August] ⁵⁵ <i>Individuals</i> ≥ <i>50</i> : 83% (95% CI, 81-85) ¹⁵	No available data	Single dose: 13.8% (95% CI, -60.2-54.8) ⁵⁹ . Two doses: 59% (95% CI, 16-81.6) against SARS-CoV-2 infection and 70.2% (95% CI, 29.6-89.3) against moderate COVID-19 infection ⁵⁹ .	Single dose: 44% (95% CI, 0-71; India) [May – July 2021] ³⁸ Two doses: 64% (95% CI, 40-79; India) [May – July 2021] ³⁸	No available data

)	S	P	Н	+

	42% (95% CI, 13-62) ³⁰ . 89.8% (95% CI, 89.6-90.0) [2-9 weeks after second dose] ⁵³ . 69.7% (95% CI, 68.7-70.5) [≥20 weeks after second dose] ⁵³ . 64.6% (95 CI, 60.6-68.2) ⁴³ 52.4% (95% CI, 48.0-56.4) [among nursing home residents] ⁵⁴ . 53% (95% CI, 39-65) [4 months after second dose] ³¹ 50% (95% CI, 47-52) [August; elderly Veteran population] ⁵⁵ <i>Against severe COVID-19:</i> 91.4% (95% CI, 82.5-95.7) ⁵² .	86.7% (95% CI, 84.3-88.7) ⁴⁷ 56.6% (95% CI, 42.0-67.5) against infection ⁵⁷ 84.2% (95% CI, 56.4-94.3) against symptomatic infection ⁵⁷ 64% (95% CI, 62-66) [August; elderly Veteran population] ⁵⁵ 10-14 weeks after second dose: 90.3% (95% CI, 67.2-97.1) ⁵³ .	47.3% (95% CI, 66.3-67.0) [≥20 weeks after second dose] ⁵³ . 81% (95% CI, 71-88; India) [May – July 2021] ³⁸ Odds ratio of 5.45 (95% CI, 1.39-21.4) to become infected with B.1.167.2 compared to non-B.1.167.2 ⁵⁸ .				
Mu (B.1.621)	Mu variant is 9.1 times more resistant than the	<u>Two doses:</u> 90.4% (95% CI, 73.9-96.5) ⁴⁷	No available data	No available data	No available data	No available data	No available data

SS	P	Н	+	

	wild type strain when vaccinated with BNT162b2 ⁶⁰	(demonstrated similar protective measures as against the Alpha variant)					No available data	
			EFFECTIVEN	IESS AGAINST HOS	PITALIZATION			
Any SARS-CoV- 2 infection	Single dose: 85% (pooled meta-analysis) ⁶ Two doses: 91% (pooled meta-analysis) ⁶ 91% (95% CI, 93%-96%; United States) [May to July 2021] ^{7xxii}	Single dose: 73% (pooled meta-analysis) ⁶ Two doses: 88% (pooled meta-analysis) ⁶ 91% (95% CI, 93%-96%; United States) [May to July 2021] ^{7xxiii}	Single dose: 56% (pooled meta-analysis) ⁶ Two doses: 91% (pooled meta-analysis) ⁶	No available data	No available data	No available data	No available data	No available data
Alpha	Single dose: 83% (95% CI, 62-93) 53% (95% CI, 7-83; England) [Feb-Sep 2021] ⁶¹ Two doses: 95% (95% CI, 78-99) ⁶² . 71% (95% CI, 12-95; England) [Feb-Sep 2021] ⁶¹ <i>Against death:</i>	No available data	Single dose: 76% (95% CI, 61-85) 3% (95% CI, -38 – 39; England) [Feb-Sep 2021] ⁶¹ Two doses: 86% (95% CI, -39 – 73; England) [Feb-Sep 2021] ⁶¹ <i>Against death:</i>	Beta 67% effective at preventing hospitalizations ⁶³ . Against death: 96% effective at preventing death ⁶³ .	No available data	No available data	No available data	No available data

xxii Results do not disaggregate between mRNA vaccines, BNT162b2 and mRNA-1273.

xxiii Results do not disaggregate between mRNA vaccines, BNT162b2 and mRNA-1273.

S	P	Н	+

	98.2% (95% CI, 95.9-99.2) [2-9 weeks] ⁵³ . 90.4% (95% CI, 85.1-93.8) [≥20 weeks] ⁵³ .		94.1% (95% CI, 91.8-95.8) [2-9 weeks] ⁵³ . 78.7% (95% CI, 52.1-90.4) [≥20 weeks] ⁵³ .					
Gamma	No available data	No available data	No available data	72.9% (95% CI, 35.1-91.1) ¹⁸ Against ICU admission: 92.5% (95% CI, 54.9-99.6) ¹⁸ Against death: 90.5% (95% CI, 31.5-99.6) ¹⁸	No available data	No available data	No available data	No available data
Delta	Single dose: 94% (95% CI, 46- 99) ⁶² . 91% (95% CI, 90- 93) ⁶⁴ 4% (95% CI, -21 – 44; England) [Feb- Sep 2021] ⁶¹ Two doses: 96% (95% CI, 86- 99) ⁶² .	Single dose: 81% (95% CI, 81- 90.6) ³⁰ . Two doses: 84% (95% CI, 80- 87) ⁶⁴ 95% (95% CI, 92- 97) [June- August] ⁶⁶ 96.7% (95% CI, 93.9-98.2) ⁸	Single dose: 71% (95% CI, 51-83) ⁶² 88% (95% CI, 83-91) ⁶⁴ 2% (95% CI, -19 – 31; England) [Feb-Sep 2021] ⁶¹ Two doses: 92% (95% CI, 75-97) ⁶² .	71% ⁶³ 85% (95% CI, 73-91) ¹⁵ . 91% (95% CI, 88-94) ⁶⁴ 85% effective at preventing severe disease and hospitalization ⁶⁹ .	Single dose: Does not offer clinically meaningful protection against severe illness 70,xxiv Two doses: 88% (95% CI, 55-98) adjusted risk reduction in	Single dose: Does not offer clinically meaningful protection against severe illness 70,xxvi Two doses: 88% (95% CI, 55-98) adjusted risk reduction in	No available data	No available data

xxiv Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

xxvi Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

	88% (95% CI, 78.9-93.2) ⁵² . 75% (95% CI, 24-93.9) ³⁰ . 84% (95% CI, 79-89) ⁶⁵ . 98.4% (95% CI, 97.9-98.8) [2-9 weeks] ⁵³ . 92.7% (95% CI, 90.3-94.6) [≥20 weeks] ⁵³ . 96% (95% CI, 95-96) ⁶⁴ 80% (95% CI, 73-85) [June-August] ⁶⁶ 93% (95% CI, 84-96) ⁶⁷ 96.8% (95% CI, 93.9-98.3)[2 months after the second dose] ⁴ 93% (95% CI, 84-96) ³¹ 91.5% (95% CI, 84	Against ICU admission: 86% (95% CI, 79-90) ⁶⁴ 96% against severe COVID-19 infection ⁵⁶ .	95.2% (95% CI, 94.6-95.6) [2-9 weeks] ⁵³ . 77.0% (95% CI, 70.3-82.3) [≥20 weeks] ⁵³ . 94% (95% CI, 92-95) ⁶⁴ 14% (95% CI, -5 – 46; England) [Feb-Sep 2021] ⁶¹ Against ICU admission: Single dose: 92% (95% CI, 84-96) ⁶⁴ Two doses: 96% (95% CI, 94-98) ⁶⁴ Against death: 91% (95% CI, 86-94) [≥2 weeks after second dose] ⁶⁸	Individuals ≥50: 84% (95% CI, 81- 85) ¹⁵ Against ICU admission: 94% (95% CI, 88- 98) ⁶⁴	developing severe illness. ^{70,xxv}	developing severe illness. ^{70,xxvii}		
--	--	---	--	---	--	--	--	--

xxv Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

xxvii Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

90% (95% CI, 83-
94) [≥2 weeks
after second
dose] ⁶⁸

DURATION OF PROTECTION, TRANSMISSION & BREAKTHROUGH INFECTIONS

Median time between second dose and infection: 146 days (IQR, 121-167)⁷¹

Anti-SARS-CoV-2

Antibodies:

Duration of

protection

(antibodies)

1 month after 2nd dose: 1762 KU/L (IQR: 933-3761) 3 months after 2nd dose: 1086 KU/L (IQR: 629-2155) 6 months after 2nd dose: 802 KU/L (IQR, 447-1487)⁷²

No health worker had antibodies BELOW methoddependent cut-off (0.8 KU/L)

Neutralizing antibodies:

Preliminary phase I results: Antibody activity

remained high in all age groups at day 209 (approximately 6 months) GMT were lower in ≥56 years old⁷⁶

Neutralizing antibodies: At peak immunity. NAb titre was 5,848, after 8 months titre was 133⁷³

Pseudovirus neutralizing antibodies: At peak immunity, pseudovirus NAb titre was **1,569**. after 8 months titre was **273**⁷³

Antibody Response: After single dose, antibody response declined within one year, but remained above baseline levels. Antibody levels after day 180: 0.54 GMR (CI, 0.47-0.61). Antibody levels after day 320:

Cellular Immune Response: Day 182 after first dose: median of 237 SFUx10⁶ **PBMC (IQR, 109-520)**⁷⁷

0.30 GMR (CI,

 $0.24 - 0.39)^{77}$

6 months after second dose: (median 1240,

Neutralizing antibodies: Remained largely stable for 8-9 months⁷⁸

Remained stable for 8 months: At 4 weeks after immunization NAb titre was 146, after 8 months titre was 629⁷³

Pseudovirus neutralizing antibodies: Remained stable for 8 months: At 4 weeks after immunization pseudovirus NAb titre was 391, after 8 months titre was 185⁷³

Bindina antibodies:

A phase I/II Unexposed After 1st dose: **43.6 IU/mL** (95% CI, 30.3-62.8) After 2nd dose: 377.0 IU/mL (95% CI: 324.3-438.3) 3 months after 2nd

Exposed subjects: Before 1st dose: 203.2 UI/mL (95% CI: 42.9-962.4) After 1st dose: 761.7 UI/mL (95% CI: 381.1-1522) After 2nd dose: 719.9 UI/mL (95% CI: 264.6-1959)

dose: 125.4 IU/mL

(95% CI: 88.2-

 $178.4)^{80}$

Antibody

Response:

subjects:

Anti-spike Protein RBD IgG Antibodies: Younger age groups (<60): 1 month after 2nd dose: 97% seropositivity, 11.3 (IQR, 6.2-20.7) 3 months after 2nd dose: 76%

clinical trial found that NAbs titres dropped below the seropositive cutoff of 8, 6 months after the administration of the first dose⁸².

80-90% of anti-S IgG and Nab titers against wild type waned 6 months after second vaccination83

No available No available data data

Universität

3 months after 2nd

dose: 484.4 IU/mL

At peak immunity, NAb titre was **1,789**, after 8 months titre was **53**⁷³

Pseudovirus neutralizing antibodies: At peak immunity, pseudovirus NAb titre was 700, after 8 months titre was 160⁷³

Anti-spike Protein RBD IgG Antibodies: At peak immunity, **RBD** titre was **21.564**, after 8 months titre was 755⁷³

Younger age groups (<60): 1 month after 2nd dose: 100% seropositivity, 35.3 (IQR. 27.6-40.0) 3 months after 2nd dose: 100% seropositivity, 19.2 (IQR, 8.2-23.1)74

Anti-spike Protein RBD IgG Antibodies: At peak immunity, **RBD** titre was **25.677**. after 8 months titre was 1.546⁷³

Humoral & Cellular Immune Response: CD8+ T cell response was **0.017%** 8 months after full vaccination⁷³

IQR 432-2002) in groups with 15-25 week interval between doses⁷⁷

Anti-spike Protein

RBD laG Antibodies: Younger age groups (<60): 1 month after 2nd dose: 100% seropositivity, 17.1 (IQR, 9.9-23.6) 3 months after 2nd dose: 97% seropositivity, 6.5 (IQR, 3.5-9.3)⁷⁴

Older age groups (≥60): 1 month after 2nd dose: 96% seropositivity, 13.3 (IQR, 6.9-27.7) 3 months after 2nd dose: 90% seropositivity, 3.9 (IQR, 1.9-8.4)⁷⁴

Remained stable 6 months irrespective of age aroup⁷⁸

Humoral & Cellular Immune Response: Antibody responses were detected in all vaccine recipients on **day 239** (stable response for at least 8 months)79

CD8+ T cell response was 0.12% 8 months after vaccination⁷³

Anti-spike Protein RBD IgG Antibodies: Remained stable for 8 months: At 4 weeks after immunization titre was 1.361, after 8 months titre was 843⁷³

(95% CI: 147.3-1593)80

Anti-RBD IaG: Decreased up to 41.8% 2 months after second dose and dropped to **42.9%** decrease after 7 months⁸¹

Binding Antibodies: Decreased 82.1% 7 months after second dose81

seropositivity, 2.4 (IQR, 1.0-5.0)⁷⁴

Older age groups

(≥60): 1 month after 2nd dose: 88% seropositivity, 6.4 (IQR, 2.5-13.6) 3 months after 2nd dose: 60% seropositivity, 1.3 (IQR, 0.5-3.3)⁷⁴

Older age gr	ouns			
(≥60):	, a po			
1 month after	2 nd			
dose: 100%				
seropositivity	29.4			
(IQR, 22.5-33	.3)			
3 months after	r 2 nd			
dose: 100% seropositivity	14.8			
(IQR, 7.4-18.	7) ⁷⁴			
(1911, 7.4 10.	,			
Sub-population	ons:			
Older age (≥	35):			
38% to 42%				
decrease of				
humoral antibodies				
compared to	18-			
to 45-year-old	75			
Older age (≥	i5)			
AND men:				
37% to 46% decrease				
compared to	18-			
to 45-year-old				
women ⁷⁵				
_				
Immunosup	ress			
ion: 65% to 70%				
decrease				
compared to	non-			
immunosuppi				
d ⁷⁵				

SS	P	Н	+

	Obesity (BMI ≥30): 31% increase in neutralizing antibody compared with nonobese ⁷⁵ Humoral & Cellular Immune Response: CD8+ T cell response was 0.016% 8 months after full vaccination ⁷³							
Duration of protection (vaccine effectiveness)	Effectiveness against any SARS-CoV-2 Infection: After reaching peak VE (77.5%) 1 month after 2 nd dose, VE dropped to 20% in months 5-7 after 2 nd dose ⁸⁴ VE reduced from 87% (95% CI, 85- 89) to 56% (95%	36.4 (95% CI, 17.1-51.5) reduction of observed incidence rate (SARS-CoV-2 infection) if vaccinated from Dec 2020 – Apr 2021 than Jul 2021 – Dec 2020.90 46.0 (95% CI, -52.4-83.2) reduction of	VE reduced by 7% (95% CI, -18 - 2) for every 30 days from the second dose for those aged 18 to 64 years ⁴⁵ . VE reduced from 58% (95% CI, 51-65) to 27% (95% CI, 17-37) after 4 months. ³² VE reduced from 88% (95% CI, 87-	A study observed sustained and stable vaccine effectiveness starting 14 days post vaccination to a maximum of 152 days after vaccination ¹⁵ . VE decreased from 89.4% in May to 51.7% in July ³⁶	No available data	No available data	No available data	No available data

SSF	РΗ	+

CI, 53-59) after 4	observed	89) in March to	VE decreased
months.32	incidence rate	3% (95% CI, -7-	from 86.4% (95%
	(severe SARS-	12) in August ⁵⁵	CI, 85.2-87.6) in
VE reduced from	CoV-2 infection) if	,	March 2021 to
91% (95% CI, 91-	vaccinated from	VE decreased by	13.1% (95% CI,
92) in March to	Dec 2020 - Apr	18.5% points	9.2-16.8) in
50% (95% CI, 47-	2021 than Jul	(95% CI 8.4-33.4)	September 202188
52) in August ⁵⁵	2021 – Dec	among all ages	·
_	2020. ⁹⁰	and 19.9% points	Fully vaccinated
VE reduced from		among older	HCWs:
89.0% (95% CI,	VE against the	individuals (95%	Adjusted VE was
84.6-92.1; United	Delta variant	CI; 9.2-36.7)	82.3% (95% CI,
States) [May to	declined from	Overall average	<mark>75.1-87.4%;</mark>
August] to 62.7%	94.1% (95% CI,	from Systematic	United States) [16
(95% CI, 62.4-	90.5-96.3) 14-60	Review and Meta-	Dec 2020 to 30
63.1; United	days after	Regression]86xlii	Sept 2021]89xlv
States) [May to	vaccination to		
August]85xxviii	80.0% (95% CI,	Effectiveness for	Fully vaccinated
	70.2-86.6) 151-	<u>symptomatic</u>	HCWs during the
VE decreased by	180 days after	COVID-19	<u>period of Delta</u>
18.5% points	vaccination.47	<u>disease:</u>	<u>variant</u>
(95% CI 8.4-33.4)		VE decreased by	<u>predominance</u> :
among all ages	91% [January-	25.4% (95% CI,	Adjusted VE was
and 19.9% points	March]	13.7-42.5) among	<mark>76.5%</mark> (95% CI,
among older	71% (95% CI, 53-	all ages and	40.9-90.6; United
<mark>individuals (95%</mark>	83) [April-May]	32.0% (95% CI,	States) [01 July
CI; 9.2-36.7)	63% (95% CI, 44-	<mark>11.0-69.0) among</mark>	2021 to 30 Sept
Overall average	76) ³⁶	older individuals	2021] ^{89xlvi}
from Systematic		Overall average	

xxviii Study does not differentiate between the two mRNA vaccines, Pfizer and Moderna.

xlii Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

 $^{^{\}mbox{\scriptsize xiv}}$ Study does not differentiate between Pfizer, Moderna, and Janssen.

xlvi Study does not differentiate between Pfizer, Moderna, and Janssen.

SSP	Н	+

Review and Meta-	VE reduced from	from Systematic	VE decreased by
Regression]86xxix	90% (95% CI, 88-	Review and Meta-	18.5% points
	91) to 71% (95%	Regression]86xliii	(95% CI 8.4-33.4)
Effectiveness for	CI, 68-74) after 4	,g	among all ages
symptomatic	months ³²	Effectiveness for	and 19.9% points
COVID-19	HIOHUIS	severe COVID 19	among older
	\/		
<u>disease:</u>	VE reduced from	<u>disease:</u>	individuals (95%
VE decreased by	91% (95% CI, 72-	VE decreased by	CI; 9.2-36.7)
<mark>25.4%</mark> (95% CI,	98) in January-	<mark>8.0%</mark> (95% CI,	[Overall average
13.7-42.5) among	March to 71%	3.6-15.20) among	from Systematic
all ages and	(95% CI, 53-83) in	all ages and 9.7%	Review and Meta-
32.0% (95% CI,	April-May to 63%	(95% CI; 5.9-14.7)	Regression]86xlvii
11.0-69.0) among	(95% CI, 44-76) in	among older	
older individuals	June-August ³⁶	individuals	Effectiveness for
Overall average	- J	Overall average	symptomatic
from Systematic		from Systematic	COVID-19
Review and Meta-	VE reduced from	Review and Meta-	disease:
Regression ^{86xxx}	92% (95% CI, 92-	Regression]86xliv	VE decreased by
regression		regression	
Cition ative manage for	93) in March to		25.4% (95% CI,
Effectiveness for	64% (95% CI, 62-		13.7-42.5) among
severe COVID 19	66) in August ⁵⁵		all ages and
<u>disease:</u>			32.0% (95% CI,
VE decreased by	VE against		<mark>11.0-69.0) among</mark>
8.0% (95% CI,	infection was 82%		older individuals
3.6-15.20) among	(95% CI, 79-85)		Overall average
all ages and 9.7%	14-90 days after		from Systematic
(95% CI; 5.9-14.7)	the second dose		
among older	and appeared to		

xxix Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xxx Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xliii Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xliv Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xivii Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

SSP	H	SWISS PUBLI

<mark>individuals</mark>	wane over time	Review and Meta-		П
[Overall average	and was 63%	Regression]86xlviii		Ш
from Systematic	(95% CI, 55-68)			
Review and Meta-	91-180 days after	Effectiveness for		
Regression]86xxxi	the second dose	severe COVID_19		
	[27 Dec 2020 - 26	<u>disease:</u>		
<u>Effectiveness</u>	Oct 2021;	VE decreased by		
<u>against</u>	Finland]87xxxv	8.0% (95% CI,		
Hospitalization		3.6-15.20) among		ľ
and Death:	VE decreased	all ages and 9.7%		
After reaching	from 89.2% (95%	(95% CI; 5.9-14.7)		
peak VE (96.8%)	CI, 88.8-89.6) in	among older		
2 months after 2 nd	March 2021 to	individuals		
dose, VE did not	58.0% (95% CI,	Overall average		
decline over	56.9-59.1) in	from Systematic		
time, except for	September 202188	Review and Meta-		
7 th months (VE		Regression]86xlix		
55.6%) with very	Fully vaccinated			
few cases84	<u>HCWs:</u>			
	Adjusted VE was			
VE reduced by	<mark>82.3% (</mark> 95% CI,			
22% (95% CI, 6-	<mark>75.1-87.4%;</mark>			
41) for every 30	United States) [16			
days from the	Dec 2020 to 30			
second dose for	Sept 2021]89xxxvi			
those aged 18 to				
64 years ⁴⁵ .	<u>Fully vaccinated</u>			
	HCWs during the			

xxxi Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xxxv Study does not differentiate between COMIRNATY/BNT162b2 and SPIKEVAX/ mRNA-1273.

xxxvi Study does not differentiate between Pfizer, Moderna, and Janssen.

xiviii Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xlix Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

SSP	Н	+

/E against	period of Delta
nfection was 82%	<u>variant</u>
95% CI, 79-85)	predominance:
14-90 days after	Adjusted VE was
he second dose	76.5% (95% CI,
and appeared to	40.9-90.6; United
vane over time	States) [01 July
and was 63 %	2021 to 30 Sept
95% CI, 55-68)	2021]89xxxvii
91-180 days after	2021]
he second dose	VE reduced from
27 Dec 2020 – 26	89.0% (95% CI,
Oct 2021;	84.6-92.1; United
Finland] ^{87xxxii}	States) [May to
a.raj	August] to 62.7%
/E decreased	(95% CI, 62.4-
rom 86.9% (95%	63.1; United
CI, 86.5-87.3) in	States) [May to
March 2021 to	August]85xxxviii
13.3% (95% CI,	· · · · · · · · · · · · · · · · · · ·
11.9-44.6) in	VE decreased by
September 2021 ⁸⁸	18.5% points
•	(95% CI 8.4-33.4)
Fully vaccinated	among all ages
HCWs:	and 19.9% points
Adjusted VE was	among older
<mark>32.3% (</mark> 95% CI,	individuals (95%
<mark>75.1-87.4%;</mark>	CI; 9.2-36.7)
United States) [16	Overall average
	from Systematic

xxxii Study does not differentiate between COMIRNATY/BNT162b2 and SPIKEVAX/ mRNA-1273.

xxxviii Study does not differentiate between Pfizer, Moderna, and Janssen.

xxxviii Study does not differentiate between the two mRNA vaccines, Pfizer and Moderna.

D 0000 t- 00	Daview and Mate		
Dec 2020 to 30	Review and Meta-		
Sept 2021]89xxxiii	Regression]86xxxix		
Fully vaccinated	Effectiveness for		
HCWs during the	<u>symptomatic</u>		
period of Delta	COVID-19		
variant	<u>disease:</u>		
predominance:	VE decreased by		
Adjusted VE was	25.4% (95% CI,		
<mark>76.5% (</mark> 95% CI,	13.7-42.5) among		
40.9-90.6; United	all ages and		
States) [01 July	32.0% (95% CI,		
2021 to 30 Sept	11.0-69.0) among		
2021] ^{89xxxiv}	older individuals		
2021]	Overall average		
	from Systematic		
	Review and Meta-		
	Regression) ^{86xl}		
	(Keglession)**		
	Effectiveness for		
	severe COVID 19		
	disease:		
	VE decreased by		
	8.0% (95% CI,		
	3.6-15.20) among		
	all ages and 9.7%		
	(95% CI; 5.9-14.7)		
	among older		
	<mark>individuals</mark>		

xxxiii Study does not differentiate between Pfizer, Moderna, and Janssen.

xxxiv Study does not differentiate between Pfizer, Moderna, and Janssen.

xxxix Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

xl Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

S	P	H	+

	Drion Dolla	[Overall average from Systematic Review and Meta- Regression] ^{86xli}	400/ (limited data)					
Transmission prevention	Prior Delta Variant: Vaccine effectiveness against infectiousness given infections 41.3%91 VE against transmission 88.5%91 VE against onwards transmission of Alpha 57% (95% CI, 5-85)61 During Delta Variant: Similar Ct values (<25) were found	VE against onwards transmission: 52% (95% CI, 33-69) ¹⁷ VE against transmission from vaccinated index case to unvaccinated contact is 63% (95% CI, 46-75) and 40% (95% CI, 20-54) to a vaccinated contact. ^{95li}	May not be able to block the transmission of the alpha variant as efficiently as the wild type ⁹⁶ . VE against transmission from vaccinated index case to unvaccinated contact is 63% (95% CI, 46-75) and 40% (95% CI, 20-54) to a vaccinated contact. ⁹⁵ Evidence of fully	Limited data	Unknown	Unknown	No available data	No available data
	in both vaccinated and unvaccinated groups ⁹²		vaccinated individuals infecting other					

xli Study does not differentiate between Pfizer/BioNTech-Comirnaty, Moderna-mRNA-1273, Janssen-Ad26.COV2.S and AstraZeneca-Vaxrevria.

^{II} Study does not differentiate between Comirnaty/BNT162b2, Spikevax/ mRNA-1273, and Vaxzevria/ ChAdOz1 nCOV-19.

lii Study does not differentiate between Comirnaty/BNT162b2, Spikevax/ mRNA-1273, and Vaxzevria/ ChAdOz1 nCOV-19.

SSF	H	+

Studies from Scotland and England demonstrated reductions in secondary infections among families of vaccinated individuals compared to families of unvaccinated individuals ^{93,94} . VE against onwards transmission: 62% (95% CI, 57-67) ¹⁷ VE against transmission from vaccinated index case to unvaccinated contact is 63% (95% CI, 46-75) and 40% (95% CI, 20-54) to a vaccinated contact. ⁹⁵¹	fully vaccinated individuals ⁹⁷ 81 breakthrough infections among 1100 HCWs; 32 breakthrough infections among 4000 HCWs ⁹⁷ VE against onwards transmission of Alpha 35% (95% CI, -26 – 74) ⁶¹ VE against onwards transmission of Delta 42% (95% CI, 14-69) ⁶¹			
oon.aou				

¹ Study does not differentiate between Comirnaty/BNT162b2, Spikevax/ mRNA-1273, and Vaxzevria/ ChAdOz1 nCOV-19.

SSP	H	+

	VE against onwards transmission of Delta 31% (95% CI, -3 – 61) ⁶¹							
Breakthrough infections	From 6,161 patients with a positive nasopharyngeal SARS-CoV-2 PCR, 1,120 (18%) were breakthrough infections – 97% of these occurred after 2 May (emergence of Delta variant). Of the 1,120 cases, 126 (12%) were hospitalized. Of the 126 breakthrough admissions, 59 were vaccinated with BNT162b298. Individuals vaccinated in January and February had a 51% (95% CI, 40- 68) increased risk for breakthrough infections	From 6,161 patients with a positive nasopharyngeal SARS-CoV-2 PCR, 1,120 (18%) were breakthrough infections – 97% of these occurred after 2 May (emergence of Delta variant). Of the 1,120 cases, 126 (12%) were hospitalized. Of the 126 breakthrough admissions, 36 were vaccinated with mRNA-1273. Breakthrough infections remained under 1% for fully vaccinated individuals (no difference	As of 10 June, 1.5 million individuals have been fully vaccinated with Covishield in Odisha Province, India. Between 1 March to 10 June, 239 breakthrough infections (SARS-CoV-2 positive after having received two doses of Covishield) were identified. Of these, 199 (83.3%) were symptomatic, 24 (10.0%) were hospitalized - 59 individuals had comorbidities 100 Median antibody titer: 647.5 AU/ml 100	From 6,161 patients with a positive nasopharyngeal SARS-CoV-2 PCR, 1,120 (18%) were breakthrough infections – 97% of these occurred after 2 May (emergence of Delta variant). Of the 1,120 cases, 126 (12%) were hospitalized. Of the 126 breakthrough admissions, 10 were vaccinated with Ad26.COV2.S ⁹⁸ . 4.2% of fully vaccinated HCWs developed breakthrough infections – all cases were	No available data	No available data	As of 10 June, 380,000 individuals have been fully vaccinated with Covaxin in Odisha Province, India. Between 1 March to 10 June, 35 breakthrough infections (SARS-CoV-2 positive after having received two doses of Covishield) were identified. Of these, 29 (82.9%) were symptomatic, 3 (8.6%) were hospitalized. 5 individuals had comorbidities 100 Median antibody titer: 213.5 AU/ ml100	No available data

S	P	Η	+

compared to individuals vaccinated in March and April ⁹⁹ Breakthrough infections remained under 1% for fully vaccinated individuals (no difference between Pfizer or Moderna recipients between May and August 2021. ⁸⁵	between Pfizer or Moderna recipients between May and August 2021.85	High viral loads were observed 2-3 days before symptom onset among 49 symptomatic breakthrough cases (out of 62). Their peak viral loads measured at any point in time were higher than that of asymptomatic cases (IQR: 16.5 log10/mL vs 30.8 log10/mL, respectively). NAbs were measured for 10 breakthrough cases, all 10 cases had lower NAbs at day 14 and 90 post second vaccination compared to controls ¹⁰¹	symptomatic but mild, only one case required hospitalization 102 Rate of breakthrough infections was comparable to Pfizer and Moderna recipients during the initial stages of the study, but increased to 1.96% (2 times the breakthrough rate of mRNA vaccines).85			4.2% of fully vaccinated HCWs developed breakthrough infections – all cases were symptomatic but mild, only one case required hospitalization liv 102	
---	---	--	--	--	--	---	--

liii Study does not differentiate between Covishield (*n*=62.4%) and Covaxin (*n*=37%).

liv Study does not differentiate between Covishield (*n*=62.4%) and Covaxin (*n*=37%).

			SAFE	ΓY AND ADVERSE Ε	VENTS			
Common side effects	Pain at the injection site, fatigue, headache, myalgia, chills and fever ¹⁰³ , arthralgia ¹⁰⁴ Optimal safety for asthma patients ¹⁰⁵ . The vaccine is considered safe for cancer patients undergoing treatments ¹⁰⁶ .	Pain at injection site, headache, fatigue, myalgia, arthralgia ¹⁰⁷ , Covid arm (cutaneous hypersensitivity) ¹⁰⁸ . The vaccine is considered safe for cancer patients undergoing treatments ¹⁰⁶ .	Fatigue, myalgia, arthralgia, headache ¹⁰⁹ , lethargy, fever, & nausea ¹¹⁰ .	Headache, fever, chills, fatigue, myalgia, and nausea ¹¹¹ .	Pain at the injection site, dizziness, fever, headache, fatigue, nausea, vomiting, & allergic dermatitis ^{110,112} .	Pain at injection site, headache, fatigue, tremors, & flushing ¹¹³ , inflammatory reaction, urticaria ¹¹⁴ , myalgia ¹¹⁵	Pain at injection site, headache, pyrexia, fatigue, myalgia ¹¹⁶	Pain at injectionsite, headache, muscle pain, fatigue ⁴⁰
Rare adverse events	Myocarditis & myopericarditis 117- 119, anaphylaxis and swelling of the lips, face, and tongue related to anaphylaxis cases per million doses administered) 121, axillary lymphadenopathy, paroxysmal ventricular arrhythmia, leg paresthesia 122,	Myocarditis & myopericarditis 117- 119, orofacial swelling & anaphylaxis 120. Potential risk factor for Bell's palsy 140 (most improve upon follow-up) 163, herpes zoster reactivation 127, varicella zoster reactivation 27, herpes zoster ophtalmicus 164,	Transverse myelitis, high fever ^{109,174} , cutaneous hypersensitivity ¹⁷⁴ , vasculitis ¹⁷⁵ , thromboembolism ¹ ⁷⁶ , vaccine induced immune thrombotic thrombocytopenia ¹ ^{77, 178-180} , intracerebral haemorrhage ¹⁸¹ , small vessel vasculitis ¹⁷⁸⁻¹⁸⁰ ,	Thrombosis, thrombocytopenia, increased risk of developing Guillain-Barré syndrome post vaccination ²⁰⁰ , herpes zoster ophtalmicus ¹⁶⁴ , pseudothrombocyt openia ²⁰¹ , vaccine induced thrombocytopic thrombosis ²⁰² , cutaneous reactions ¹⁵⁹	Cutaneous reactions ¹⁵⁹ Rare adverse events were similar among the vaccine groups and control group within 7 days ²⁰³ . Pityriasis rosea ²⁰⁴ , uveitis ²⁰⁵	Myalgia, fever ¹¹³ , pityriasis rosea (lesions improved completely after ~8 weeks) ¹²⁴ , reactivation of herpes zoster and herpes simplex ¹¹⁴ . Most reactions improved without treatment within a few weeks ¹¹⁴ , Guillain-Barré syndrome ²⁰⁶ , subacute thyroiditis ²⁰⁷ ,	No available data	Cutaneous reactions ¹⁵⁹ Myocarditis was reported in one vaccine recipient, occurring 3 days after second dose ⁴⁰

SS	P	Н	+	

pityriasis rosea ¹²³ (lesions improved completely after ~8 weeks) ¹²⁴ , lymphocytic vasculitis ¹²⁵ , varicella-zoster reactivation ¹²⁶⁻¹²⁸ , Kikuchi-Fujimoto disease ¹²⁹ , thrombotic thrombocytopenic purpura ^{130,131} , IgA nephropathy flare-up ¹³² , Guillain-Barré syndrome ^{133,134} , pustural psoriasis ¹³⁵ , immunoglobulin A vasculitis ¹³⁶ , immune complex vasculitis ¹³⁷ , Rhabdomyolysis ¹³ ⁸ , subacute thyroiditis ¹³⁹ , Bell's Palsy ¹⁴⁰ , erythema multiforme ¹⁴¹ , vaccine induced interstitial lung disease ¹⁴² , macular neuroretinopathy ¹⁴ ³ , brachial	eczema & urticaria ¹⁶⁵ , transverse myelitis ¹⁶⁶ , Guillain-Barré syndrome ^{167,168} , acute generalized exanthematous pustulosis ¹⁶⁹ , rhabdomyolysis ¹⁷⁰ , ¹⁷¹ , herpes zoster ophtalmicus ¹⁶⁴ , eczema & urticaria ¹⁶⁵ , transverse myelitis ¹⁶⁶ , Guillain-Barré syndrome ^{167,168} , acute generalized exanthematous pustulosis ¹⁶⁹ , rhabdomyolysis ¹⁷⁰ , ¹⁷¹ , cervical lymphadenopathy ¹⁷² , glomerulonephritis ¹⁵¹ , Behçet's disease ¹⁷³ , neurological autoimmune disease ¹⁵⁴ , axillary adenopathy ¹⁵⁵ , multiple	psoriasis ¹⁸² , rosacea, raynaud's phenomenon ¹⁶⁵ , Ischaemic stroke ¹⁸³ , anaphylaxis ¹⁸⁴ , recurrent herpes zoster ^{185,lv} , generalized bullous fixed drug eruption ¹⁸⁶ , Guillain-Barré syndrome ^{134,187} , pityriasis rosea ^{188,189} . Vaccination in individuals with adrenal insufficiency can lead to adrenal crises ^{134,187} , Dariers disease ^{188,189} , vaccine induced acute localized exanthematous pustulosis ¹⁹⁰ , Henoch-Schönlein Purpura ¹⁹¹ , rhabdomyolysis ¹⁹² , Grave's disease ¹⁹³ , acute	97% of reported reactions after vaccine administration were non-serious ¹¹¹ .		erythema multiforme ²⁰⁸ , uveitis ²⁰⁵ , vaccine induced thrombotic thrombocytopenia ² ⁰⁹ , serum sickness-like reaction ²¹⁰ , cutaneous reactions ¹⁵⁹		
---	---	--	--	--	---	--	--

^{Iv} All cases occurred in patients with chronic urticaria and were being treated with cyclosporine.

SSP	Н	+

neuritis ¹⁴⁴ , thyroid eye disease ¹⁴⁵ , exacerbation of subclinical hyperthyroidism ¹⁴⁶ , rhabdomyolysis ¹⁴⁷ , internal jugular vein thrombosis ¹⁴⁸ , herpes simplex virus keratitis ¹⁴⁹ , cervical lymphadenopathy ¹⁵⁰ , glomerulonephritis ¹⁵¹ , Ramsay-Hunt syndrome ¹⁵² , Sweet's syndrome ¹⁵³ , neurological autoimmune disease ¹⁵⁴ , axillary adenopathy ¹⁵⁵ , multiple sclerosis ¹⁵⁶ , meningoencephalitis ¹⁵⁷ , intracerebral haemorrhage due to vasculitis ¹⁵⁸ , cutaneous reactions ¹⁵⁹ , pigmented purpuric dermatosis ¹⁶⁰	sclerosis ¹⁵⁶ , cutaneous reactions ¹⁵⁹	demyelinating polyradiculoneuro pathy ¹⁹⁴ , erythema nodosum ¹⁹⁵ , polyarthralgia ¹⁹⁶ , recurrence of cutaneous T-cell lymphoma ¹⁹⁷ , neurological autoimmune disease ¹⁵⁴ , multiple sclerosis ¹⁵⁶ , sudden sensorineural hearing loss ¹⁹⁸ , acute-onset polyradiculoneuro pathy ¹⁹⁹ , cutaneous reactions ¹⁵⁹					
---	---	---	--	--	--	--	--

SSP	Н	+

	Systemic allergic symptoms were more common in BNT162b2 than mRNA-1273, however, anaphylaxis rates were similar for both mRNA vaccines ¹⁶¹ Having adverse reactions is associated with enhanced SARS-CoV-2 IgG antibody							
Potential associated adverse events (causal links not yet proven)	response ¹⁶² Cerebral venous sinus thrombosis and intracranial haemorrhage ²¹¹ , aseptic meningitis ²¹² , autoimmune hepatitis ^{213,214} , multiple sclerosis relapse ²¹⁵ , myeloperoxidase anti-neutrophil cytoplasmic antibody-positive optic perineuritis ²¹⁶ ,	Cerebral venous sinus ²³¹ , Autoimmune hepatitis ²¹³ , myocardial infarction ²³² , autoimmune haemolytic anaemia ²³³ , hypophysitis & panhypopituitaris m ²³⁴ , erythema nodosum-like rash ²³⁴ , pulmonary embolism ²³⁵ , minimal change disease ²³⁶ ,	Autoimmune hepatitis ^{213,240,241} , Acute hyperglycaemic crisis ²⁴² , Facial nerve palsy, cervical myelitis ¹⁸³ , alopecia areata ²⁴³ , takotsubo (stress) cardiomyopathy ²⁴⁴ , acute disseminated encephalomyelitis ² ⁴⁵ , cerebral venous sinus thrombosis ^{246,231}	Facial Diplegia ²⁴⁸ , acute macular neurotinopathy ²⁴⁹ , cerebral venous sinus thrombosis ^{231,250} , oral lichen planus ²⁵¹	No available data	Likely vaccine associated disease enhancement (VADE) ²⁵²	No available data	No available data

central retinal vein occlusion ²¹⁷ , paracentral acute middle maculopathy & acute macular neurotinopathy ²¹⁸ , Stevens-Johnson syndrome/ toxic epidermal necrolysis ^{219,220} , lichenoid cutaneous skin eruption ²²¹ , acute mania and psychotic features ²²² , acute psychosis due to anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis ²²³ , alopecia areata ²²⁴ , rhombencephalitis ²²⁵ , multisystem inflammation and organ dysfunction ²²⁶ , aplastic anaemia ²²⁷ , bullous pemphigoid ²²⁸ , minimal change	encephalomyelitis ² ³⁷ , lupus nephritis ²³⁸ One case developed IgA Nephropathy after receiving the second dose of mRNA-1273 ²³⁹ .	(higher risk for women) ¹⁷⁷ , ophthalmic vein thrombosis ²⁴⁷			
minimal change disease ²²⁹ , miller fisher syndrome ²³⁰					

SSP	Н	+

	Majaky rapartad in							
Myocarditis data	Mainly reported in young adults and adolescents ²⁵³ Israeli study: Estimated incidence within 42 days after receipt of first dose per 100,000 vaccinated persons was 2.13 cases (95% CI, 1.56-2.7) ²⁵⁴ Male patients Incidence of 4.12 (95% CI, 2.99-5.26) per 100,000 vaccinated ²⁵⁴ 3.19 cases (95% CI, 2.37-4.02) per 100,000 vaccinated ²⁵⁵ Female patients	Mainly reported in young adults and adolescents ²⁵³ 5.8 cases per 1 million second dose administrations ²⁵⁶	No available data	Myocarditis was reported as viral myocarditis. Participant fully recovered after 2 days of hospitalisation. No episode of anaphylaxis or vaccine-associated enhanced COVID-19 was reported ⁴⁰				

SSP	Η	+

Incidence of 0.23 (95% CI, 0-0.49) per 100,000 vaccinated ²⁵⁴		
0.39 cases (95% CI, 0.10-0.68) per 100,000 vaccinated ²⁵⁵		
≥30 years Incidence of 1.13 (95% CI, 0.66- 1.60) per 100,00 vaccinated ²⁵⁴		
5.8 cases per 1 million second dose administrations ²⁵⁶		
5.07 cases per 100,000 ²⁵⁷		
Disease severity Mild: 1.62 (95% CI, 1.12-2.11) Intermediate: 0.47 (95% CI, 0.21- 0.74) Fulminant: 0.04 (95% CI, 0- 0.12) ²⁵⁴		

SS	P	Н	+

	Risk per 100,000 persons 1st dose (male): 0.64 2nd dose (male); 3.83 1st dose (female): 0.07 2nd dose (female): 0.46 1st dose (male 16- 19): 1.34 2nd dose (male 16- 19): 15.07 ²⁵⁵							
			CI	HILDREN VACCINAT	TION			
Efficacy	Adolescents (12-15): After one dose had efficacy of 75% (CI, 7.6-95.5) After second dose efficacy of 100% (CI, 78.1-100) ²⁵⁸ . Children (5-11): After second dose efficacy of 90.7% (CI, 67.7-98.3) ²⁵⁹	Adolescents (12-17): After one dose had efficacy of 92.7% (CI, 67.8-99.2) After second dose efficacy of 93.3% (CI, 47.9-99.9) ²⁶¹ . Children (6month-11): Ongoing trials ²⁶²	No available data Paused ongoing trials in children aged 6-17 due to concerns over rare blood clots reported in adult population ²⁶³ .	No available data Announced at begging of April ongoing study in adolescents but paused to investigate blood clots in adult population ²⁶³ .	Children (3-17): Unknown. Ongoing clinical trial only looked at safety, tolerability, and immunogenicitylvi * * The study design administered three doses of 2 µg, 4 µg, or 8 µg of vaccine	Children (3-17): Unknown. Clinical trial only looked at safety, tolerability and immunogenicity ²⁶⁴ .	No available data	Adolescents (16-17): PREVENT-19 clinical trial ^{lvii} expanded to assess efficacy, safety, and immunogenicity in 12–17-year- old adolescents ²⁶⁵

^{lvi} Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. *The Lancet Infectious Diseases*. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00462-X/fulltext

Wii A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥18 Years With a Pediatric Expansion in Adolescents (12 to <18 Years) at Risk for SARS-CoV-2. ClinicalTrials.gov. ClinicalTrials.gov Identifier: NCT04611802. https://clinicaltrials.gov/ct2/show/NCT04611802?term=Novavax&cond=Covid19&draw=2

SSP	Н	+

	Ongoing clinical trial ²⁶⁹
--	--

SSP	Н	+

Effectiveness	Against SARS- CoV-2 infection: 91.5% (95% CI, 88.2-93.9) ²⁷⁰ 91% (95% CI, 88- 93) ²⁷¹ Against hospitalization: 81% (95% CI, -55- 98) ²⁷¹ 93% (95% CI,83- 97) ²⁷²	No available data	No available data	No available data	No available data	No available data	No available data	No available data
Safety and Adverse events	Adolescents (12-15): Local and systemic events were generally mild to moderate Severe injectionsite pain (1.5%) Fever (20%) High Fever (0.1%) Adverse events (6%) Severe adverse events (0.6%) ²⁵⁸ . Adolescent/young adults (16-25): Local and systemic events were generally mild to moderate	Adolescents (12-17): Solicited local reactions after 2nd dose (93.4%) Most common solicited adverse reactions were Injection-site pain (92.7%) Headache (70.2%) Fatigue (67.8%) Grade 3 adverse events (6.8%) Few reported cases of acute myocarditis and pericarditis	No available data	No available data	Children (3-17): Most common adverse reaction was pain at injection site in 3— 5-year group (4%), 6-12-year group (1.2%), and 13-17-year group (7.9%) Most common systemic reactions in all three age cohorts were mild to moderate fever and cough Adverse events were mostly mild	Children (3-17): Adverse reactions in 12–17 year group (35%), 3-5 year group (26%), and 6-11 year group (18%) Reported at least one adverse event (27%) Most reported events were mild and moderate and only (<1%) grade 3 events Injection-site pain (13%) Fever (25%) ²⁶⁴	Ongoing clinical trial ²⁶⁸	Ongoing clinical trial ²⁶⁹

site Fev Adv (6% Sev	e pain (3.4%) Ever (17%) Everse events Evere adverse	(mainly in males) ²⁷⁵ <u>Children (6-11):</u> Vaccine was generally well tolerated ²⁶⁶		to moderate in severity ²⁶⁷		
Pai site hea wer Ove vac	nildren (5-11):	Children (6month- 11): Ongoing trials ²⁶²				
<u>5):</u>	nildren (Under Engoing trials ²⁶⁰					
infla syn link	ultisystem lammatory ndrome (causal k not yet oven) ²⁷³					
<u>cas</u> 15- dev nep	dverse events ses: -year old boy veloped phrotic ndrome ²⁷⁴					

Myocarditis Data	Few reported cases of acute myocarditis and pericarditis in 16-25 year olds (mainly in males) ²⁷⁵ 16-29 years Incidence of 5.49 (95% CI, 3.59-7.39) per 100,00 vaccinated ²⁵⁴ Male patients (16-29 years) Incidence of 10.69 (95% CI, 6.93-14.46) per 100,000 vaccinated ²⁵⁴ Incidence of 13.6 cases (95% CI, 9.30-19.20) per 100,000 vaccinated ²⁵⁵	Few reported cases of acute myocarditis in adolescents and young adults	No available data					
------------------	--	---	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------

HETEROLOGOUS VACCINATION

SSP	Н	+

Vaccine Schedule	BNT162b2/ChAd Ox1 Administration of ChAdOx1 as second/booster dose	ChAdOx1/mRNA- 1273 Administration of mRNA-1273 as second/booster dose	ChAdOx1/BNT16 2b2 Administration of BNT162b2 as second/booster dose	Not Applicable (one dose schedule) For more information refer to booster section	BBIBP/BNT162b2	CoronaVac/ChAd Ox1 Press releases have confirmed that Thailand will use the AstraZeneca vaccine as the second dose for individuals whose first dose was Sinovaclviii CoronaVac/Convidecia	ChAdOx1/BBV15 2 Administration of Covaxin as second/booster dose	Ongoing trial ²⁷⁶ (Com-Cov2) ^{lix}
Immunogenicity	GMCs of SARS- CoV-2 anti-spike IgG at 28 days post booster: Heterologous (7133 ELU/mL, CI 6415-7932) vs. Homologous (14080 ELU/mL, CI 12491- 15871) ²⁷⁷ . SFC frequency (TOcell ELISpot):	*Spike-specific IgG antibodies: Heterologous (3602 BAU/mL) vs. Homologous (4189 BAU/mL) ⁴⁸ *Neutralizing antibodies: Heterologous (100%) vs. Homologous (100%) ²⁷⁸ .	RBD antibody titres: Heterologous (7756.68 BAU/mL, CI 7371.53-8161.96) vs. Homologous (99.84 BAU/mL, CI 76.93-129.59) at day 14 ²⁷⁹ . IgG antibody titres:	Not Applicable (one dose schedule) For more information refer to booster section	Unknown (ongoing clinical trial) ⁴⁹	CoronaVac/ChAd Ox1: Anti-S Antibodies: Heterologous (797 U/mL; 95% Cl, 598.7-1062) vs. Homologous CoronaVac (94.4 U/mL; 95% Cl: 76.1-122.1) vs. Homolougous ChAdOx1 (818	RBD antibody titres: Heterologous (1866 GMT; 95% CI, 1003-3472) vs. Homologous Covishield (2260 GMT; 95% CI, 1881-2716) vs. Homologous Covaxin (710	No available data Ongoing trial ²⁷⁶

Malaysia to stop using Sinovac vaccine after supply ends - minister. *Reuters* [press release]. https://www.reuters.com/world/asia-pacific/malaysia-stop-using-sinovac-vaccine-after-supply-ends-minister-2021-07-15/

lix Comparing COVID-19 Vaccine Schedule Combinations. *University of Oxford*. https://comcovstudy.org.uk/about-com-cov2

Heterologous (99 Heterologous GMT, 95% CI, U/mL; 95% CI: SFC/10⁶ PBMCs) **Heterologous** (3684 BAU/mL) 662.5-1010)²⁸¹ 461-1092)²⁸³ mRNA: Homologous (80 **84.7%** CoronaVac/Conv N-protein IgG: Homologous SFC/10⁶ Heterologous effectiveness (101.2 BAU/mL) idecia PBMCs)²⁷⁷. (95% CI, 83.1-(1145 GMT; 95% Neutralizina at day 14^{279} . CI, 520.7-2520) 86.1)⁸ antibodies: **Heterologous** Neutralizing Heterologous mRNA: antibodies: **54.4 GMT** (95% Homologous **84.7%** Heterologous Covishield (353.7 CI, 37.9-78) *Results based on (100%) at day 14 effectiveness GMT: 95% CI. VS. immunosuppressed (95% CI, 83.1-Homologous 219.9-568.9) VS. population 86.1)⁸ Homologous CoronaVac (30%) at day **12.8 GMT** (95% Homologous 14²⁷⁹. CI, 9.3-17.5)²⁸² Covaxin (742.4 GMT; 95% CI, Heterologous **485.8-1134)**²⁸³ (median 99%) Neutralizing VS. antibody titres: Homologous Heterologous (BNT162b2/BNT1 (171.4 GMT; 95% 62b2) CI, 121.3-242.3) (median 62%)²⁸⁰ Homologous Covishield (111 GMT; 95% CI, 98.59-124.9) VS. Homologous Covaxin (86 GMT; 95% CI, 138.2-252.0)²⁸³

SSP	Н	+

Immunogenicity against variants	No available data	No available data	Neutralizing Antibodies for Alpha, Beta, Gamma, and Delta: Heterologous 2.3-fold to 3.6- fold higher neutralizing antibodies than homologous ²⁸⁰	No available data	No available data	No available data	Neutralizing antibody titres B.1: 539.4 GMT (95% CI, 263.9-1103) ²⁸³ Neutralizing antibody titres Alpha: 396.1 GMT (95% CI, 199.1-788) ²⁸³ Neutralizing antibody titres Beta: 151 GMT (95% CI, 80.21-284.3) ²⁸³ Neutralizing antibody titres Delta: 241.2 GMT (95% CI, 74.99-775.9) ²⁸³	No available data
Reactogenicity	Observed increase in systemic reactogenicity after boost in heterologous schedules in comparison with homologous schedules ²⁷⁷	*Adverse events in heterologous and homologous vaccination groups were very similar ²⁷⁸ . *Majority of adverse events self-reported were Pain at injection	Adverse events in heterologous: Headache (44%), Myalgia (43%), Malaise (42%), Fever (2%), Injection site pain (88%), Induration (35%), Erythema (31%) ²⁷⁹ .	Not Applicable (one dose schedule) For more information refer to booster section	Unknown (on- going clinical trial) ²⁸⁴	CoronaVac/ChAd Ox1: Unknown CoronaVac/Conv idecia: Convidecia recipients reported more adverse reactions and reported higher	Most common local adverse events: Pain at injection site (11.1%) ²⁸³ Most common systemic adverse events:	No available data Ongoing trial ²⁷⁶

SSP	Н	+

	Adverse events in heterologous: Adverse events (90) Grade 1 (54.4%) Grade 2 (37.8%) Grade 3 (7.8%) Grade 4 (0%) Arthralgia, Migraine, Back Pain ²⁷⁷ . Adverse events in homologous: Adverse events (81) Grade 1 (59.3%) Grade 2 (39.5%) Grade 3 (1.2%) Grade 4 (0%) ²⁷⁷ .	site, Swelling at injection site, Fever, Headaches, Fatigue, Chills, GI effects, Myalgia, Arthralgia ²⁷⁸ . *Results based on immunosuppressed population	Severity of adverse events in heterologous: Mild (68%), Moderate (30%), Severe (2%) ²⁷⁹ .			occurrence of solicited injection- site pain) ²⁸²	Pyrexia (27.77%, 11.1%) after 1 st and 2 nd dose Malaise (33.3%, 5.5%) after 1 st and 2 nd dose ²⁸³	
				BOOSTER DOSES				
Vaccine Schedule	BNT162b2/BNT16 2b2	mRNA- 1273/mRNA-1273	ChAdOx1/ChAdO X1	Ad26.CoV.2.S/ Ad26.CoV.2.S	SinoPharm/Sino Pharm	CoronaVac/Coro naVac	Covaxin/Covaxin	NVX- CoV2373/NVX- CoV2373
Approved Administration	Israel: 12-year-old and over can received homologous booster shot 5	Phase II booster trial of three booster doses are ongoing ²⁸⁵	Preliminary results on tolerability and immunogenicity of third dose of ChAdOx1	Johnson & Johnson has said it will submit all of their new data to the FDA for	UAE: Offering booster doses of Pfizer and Sinopharm to people who	Turkey and the United Arab Emirates began	Ongoing clinical trials ^{lxv}	Ongoing phase II trials ²⁸⁷

lxv Bharat Biotech to initiate trials of booster dose of Covid-19 vaccine. Clinical Trials Arena. https://www.clinicaltrialsarena.com/news/bharat-biotech-booster-dose/

months after full jab¹s				PUBL	IC HEALTH		
	jablx <u>United</u> Starting Septem who rec mRNA months eligible <u>Europe</u> Starting most Ei countrie plannin out boo to immune sed and populat some c adminis overall	ber, adults seived waccine 8 ago are for booster in fall, uropean es are g on rolling ster shots ber, adults seived waccine 8 ago are mRNA wonths eligible booster.	proval of strong boost immune response ²⁸⁶ States: ber, adults eived vaccine 8 ago are for	wed potential consideration for adding a booster dose and consideration to authorize two-	received full Sinopharm jab ≥6	Indonesia and Thailand are considering giving homologous booster shot to	are based on ongoing phase II

[|]x | Israel offers COVID-19 booster to all vaccinated people. Reuters [press release]. https://www.reuters.com/world/middle-east/israel-offers-covid-19-booster-shots-all-vaccinated-people-2021-08-29/

ki A country-by-country guide to coronavirus vaccine booster plans. POLITICO [press reléase]. https://www.politico.eu/article/vaccine-booster-coronavirus-covid-19-europe-delta-varian-who/

Moderna seeks U.S. authorization for COVID-19 vaccine booster. *Reuters* [press release]. https://www.reuters.com/business/healthcare-pharmaceuticals/moderna-submits-initial-data-covid-19-vaccine-booster-us-fda-2021-09-01/

Two dose version of Johnson & Johnson shot 94% effective against Covid-19, study finds. CNN. https://edition.cnn.com/2021/09/21/health/johnson-vaccine-two-doses-booster/index.html

lxiv Indonesia and Thailand consider booster shots amid doubts over Sinovac vaccine. Reuters [press release]. https://www.reuters.com/world/china/indonesia-thailand-consider-booster-shots-amid-doubts-over-sinovac-vaccine-2021-07-08/

SSP	Н	+

Time-to-booster dose	6 months to 8 months after initial two-dose regimen Israel offers up to 5 months after initial two-dose regimen	6 months to 8 months after initial two-dose regimen	6-9 months after initial two-dose regimen	6 months after one dose regimen ⁷⁸	6 months after initial two-dose regimen	6 months to 12 months After primary vaccination 8 months after the primary vaccination to healthy adults ≥60 years	Ongoing clinical trials************************************	6 months after initial two-dose regimen (189 days) ²⁸⁷
Efficacy	Symptomatic COVID-19: 95.6% during Delta prevalent period ²⁸⁸ 95.3% (95% CI, 89.5-98.3) ²⁸⁹ 96.5% (95% CI, 89.3-99.3) in 16- 55 year old ²⁸⁹ 93.1% (95% CI, 78.4-98.6) in ≥55 year old ²⁸⁹	No available data	No available data	No available data	No available data	No available data	Ongoing clinical trials************************************	No available data
Immunogenicity	Neutralizing titers: Elicits >5-8 more for wild type after 6 months after 2 nd dose ²⁹⁰ IgG Antibodies in ≥ 60 years:	Booster doses (mRNA1273 or mRNA1273.351) increased neutralizing antibody titers against wild- type ²⁹²	Antibody Levels: Higher levels after third dose (tlgG EU 3746 ; IQR: 2047-6420) ²⁸⁶	5X10 ¹⁰ vp booster dose elicited 9- fold increase at day 7 compared to first dose after 29 days in 18-55- year-olds ⁷⁸	Ongoing trial ²⁸⁴ <u>IgG</u> <u>Seroconversion:</u> 175/176 vaccinees were seropositive for IgG 14 days after	Neutralizing Antibodies: 60% higher NAbs activity against wild-type compared to 2- doses ⁸³	Ongoing clinical trials xxxvii	Anti-spike IgG: Increase of 4.6- fold compared to peak response after 2 nd dose (Day 217 GMEU = 200408; 95% CI:

	seroconversion with increase in IgG antibody titers ²⁹¹		Spike Cellular Immune Response: Increased from 200 SFUx10 ⁶ PBMC (IQR, 127- 389) after the second dose to 399 SFUx10 ⁶ PBMC (IQR, 314- 662) after the third one ²⁸⁶	1.25X10 ¹⁰ vp booster dose elicited 6-7.7-fold increase at day 28 compared to first dose after 29 days in 18-55 and ≥65- year-old ⁷⁸	receiving third dose ⁸¹ Mean IgG value increased 8.00-fold compared to before third vaccination ⁸¹ Anti-RBD IgG: Increased by 8.14-fold higher than before third vaccine ⁸¹ Memory B cells: Third dose increased the percentage of RBD-specific memory B cells (0.96%) ⁸¹	Anti-S IgG and NAbs: 20-fold increase 4 weeks post booster vaccination NAbs were maintained 60 to 180 days post booster ⁸³		159796- 251342) ²⁸⁷ Wild-type Neutralizing Response: Increase of 4.3- fold compared to peak response after 2 nd dose (IC50 = 6231; 95% CI: 4738-8195) ²⁸⁷ Older Participants (60- 84): 5.4-fold increase in antibody response ²⁸⁷ Younger Participants (18- 59): 3.7-fold increase in antibody response ²⁸⁷
Immunogenicity against variants	Beta (B.1.351): Elicits 15-21 more neutralizing titers for Beta variant after 6 months after 2 nd dose ²⁹⁰	Preliminary results of booster doses of mRNA-1273 vaccine show robust antibody	Third dose provided higher antibody titters against Alpha, Beta, and Delta variants ²⁸⁶	No available data	Ongoing trial ²⁸⁴ Beta (B.1.351): 71.6% plasma inhibitions against Beta variant ⁸¹	Beta (B.1.351): 3.0-fold decrease in neutralizing antibodies	Ongoing clinical trials ^{xxxvii}	High levels of functional antibodies against Alpha (B.1.1.7), Beta (B.1.351), and

SSP	Н	+ SWIS

	Delta (B.1.671.2): >5-fold increase in neutralizing titers against Delta compared to dose 2 titers in 18–55-year-olds >11-fold increase in neutralizing titers against Delta compared to dose 2 titers in 65–85-year-olds ²⁹⁰	response against Delta variant ²⁸⁵			Delta (B.1.671.2): 83.4%% plasma inhibitions against Delta variant ⁸¹ Lambda: 89.0% plasma inhibitions against Lambda variant ⁸¹	compared to wild type ⁸³ Gamma (P.1): 3.1-fold decrease in neutralizing antibodies compared to wild type ⁸³ Delta (B.1.671.2): 2.3-fold decrease in neutralizing antibodies compared to wild type 2.5-fold higher neutralizing potency than 2-dose vaccination ⁸³		Delta (B.1.671.2) ²⁸⁷ Delta (B.1.671.2): Increase of 6.6- fold in antibody response compared to Delta response observed with primary vaccination ²⁸⁷
Reactogenicity	Preliminary results show consistent tolerability ²⁹⁰ 25% reported at least one adverse event ²⁸⁹ Common solicited AE: Injection site pain, injection site redness, injection site swelling,	Similar safety and tolerability compared to second dose ²⁸⁵ Common solicited local adverse events: Injection-site pain (68.4% for mRNA-1273.351, 90% for mRNA-1273) fatigue (36.8% for mRNA-1273.351,	Lower reactogenicity after third dose compared to first dose ⁷⁷	No available data	Ongoing trial ²⁸⁴	The third shot is considered to be safe ⁸² . <u>Common side effects:</u> Pain at the injection site. <u>Adverse events:</u> Unrelated to the vaccination	Ongoing clinical trials ^{xxxvii}	Booster dose was well tolerated Local and systemic reactogenicity increased between Dose 1, Dose 2, and Dose 3 90% of symptoms were

	5	
SSP	Н	+

	fatigure, muscle pain, fever ²⁸⁹ ≥Grade 3 AE: 6.6% reported grade 3 or higher reactogenicity with 0.7% being local reactions and 5.9% systemic events ²⁸⁹	70% for mRNA- 1273) headache (36.8% for mRNA1273.351, 55.0% for mRNA- 1273) myalgia (31.6% for mRNA- 1273.351, 45.0% for mRNA-1273) arthralgia (21.1% for mRNA-1273, 50.0% for mRNA- 1273) ²⁹²						rated as mild or moderate ²⁸⁷
Protection against COVID-19	Confirmed Infection: Youngest age group (16-29): 17.6 (95% CI, 15.6-19.9) lower rate in booster group ²⁹³ 30-39 age group: 8.8 (95% CI, 8.2-9.5) lower rate in booster group ²⁹³ 40-49 age group: 9.7 (95% CI, 9.2-10.4) lower rate in booster group ²⁹³	No available information	No available information	No available information	No available information	No available information	Ongoing clinical trials ^{xxxvii}	No available information

1.15	de	
- 18	*	Universität
7	4	Basel

1	50-59 age group:		
	12.2 (95% CI,		
	11.4-13.1) lower		
	rate in booster		
	group ²⁹³		
	Oldest age group		
	<u>(≥60):</u>		
	11.3 (95% CI,		
	10.4-12.3) lower rate in booster		
	group ²⁹⁴		
	12.4 (95% CI,		
	11.9-12.9) lower		
	rate in booster		
	group ²⁹³		
	Cayara Illmana		
	Severe Illness:		
	40-59 age group:		
	22.0 (95% CI,		
	10.3-47.0) lower		
	rate in booster		
	group ²⁹³		
	Older population		
	<u>Oider population</u> (≥60):		
	19.5 (95% CI,		
	12.9-29.5) lower		
	rate in booster		
	group ²⁹⁴		
	18.7 (95% CI,		
	15.7-22.4) lower		

SSP	Н	+

	rate in booster group ²⁹³				
	Detailed report from Pfizer regarding booster doses can be found here: https://www.fda.go v/media/152161/d ownload				
Other	14-20 days after booster, marginal effectiveness increases to 70-84% ²⁹⁵			For more detailed information regarding immunogenicity of third dose refer to study ^{lxvi}	
	≥50: 84.4% (95% CI, 82.8-85.8) against symptomatic COVID-19 ²⁹⁶ 94.0% (93.4-94.6) against symptomatic			ciacy	
	COVID-19 compared with unvaccinated ²⁹⁶				

lxvi A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.09.02.21261735v1

HETEROLOGOUS BOOSTER DOSES Heterologous 1: Heterologous 1: Heterologous 1: Heterologous 1: BNT162b2/mRNA mRNA1273/BNT1 BNT162b2/Ad26. Heterologous: CoronaVac/ChAd 62b2 1273 CoV.2.S Ongoing trial of Ox1 Heterologous: heterologous SinoPharm/BNT1 Vaccine Heterologous 2: Heterologous 2: Heterologous 2: No available data No available data booster shot Schedule 62b2 Heterologous 2: Ad26.CoV.2.S/BN Ad26.CoV.2.S/m mRNA1273/Ad26. using NVX-CoronaVac/BNT1 T162b2 CoV.2.S RNA1272 CoV2373lxvii 62b2 *Received BNT162b2 *Received mRNA1273 *Received Ad26.CoV.2 as booster dose as booster dose as booster dose Heterologous 1: 21 to 26 days 4 months after after full jab of initial two-dose BNT162b2 CoronaVac At least 3 months At least 3 months 6 months after regimen²⁹⁷ Time-to-booster No available initial two-dose No available data after receiving two after receiving two No available data dose Heterologous 2: data dose regimen dose regimen regimen At least 3 months 6 months after after receiving two primary vaccination of dose regimen CoronaVac Binding Antibody Binding Antibody Heterologous 1: Responses: Responses: Heterologous 1: 14.8 to 32.4-fold 2-fold or greater 2-fold or greater Heterologous increase in rise in bAb noted rise in bAb noted vaccination had a neutralization No available No available data in 98-100% of in 96-100% of 9-fold greater Immunogenicity No available data No available data titers against wilddata BNT162b2 mRNA1273 **GMT** (7,947 type virus²⁹⁷ recipients²⁹⁸ recipients²⁹⁸ U/mL) than fully patients fully

Lavii COV-Boost Evaluating COVID-19 Vaccine Boosters. *University of Southampton & NHS*. https://www.covboost.org.uk/home

vaccinated with

		TOBETC	TEACH.		
Neutralizing Antibody Responses: 341.3-677.9 IU50/mL 15 days after booster with BNT162b2 ²⁹⁸ Participants who received mRNA- based booster vaccination had four-fold increase compared to Ad26.COV2.S. ²⁹⁸	Neutralizing Antibody Responses: 676.1-901.8 IU50/mL 15 days after booster with mRNA1273 ²⁹⁸ Participants who received mRNA- based booster vaccination had four-fold increase compared to Ad26.COV2.S. ²⁹⁸	Binding Antibody Responses (bAb): 2-fold or greater rise in bAb noted in 98-100% of Ad26.COV2.S. recipients ²⁹⁸ Neutralizing Antibody Responses: 31.2-382.2 IU50/mL 15 days after booster with Ad26.COV2.S. ²⁹⁸		AZD1222 and the highest antibody response, IgA, and neutralizing antibodies than other groups ²⁹⁹ Heterologous 2: Median values of IgG-S titers were higher in group that received BNT162b2 as booster than CoronaVac BNT162b2 boosted IgG-S median titers by factor of 46.6 but IgG-N titers decreased by factor of 6.5 ³⁰⁰ Single booster dose of BNT162b2 induced higher anti-spike RBD IgG antibody levels, compared to single booster dose of CoronaVac ⁷⁴	

)	S	P	Н	+

Immunogenicity against variants	Binding Antibody Responses: Baseline bAb levels for Delta were 34-45% lower compared to Wa-1 strain ²⁹⁸ Following boost, bAB levels for Delta were 15- 36% lower compared to Wa-1 strain ²⁹⁸	Binding Antibody Responses: Baseline bAb levels for Delta were 34-45% lower compared to Wa-1 strain ²⁹⁸ Following boost, bAB levels for Delta were 15- 36% lower compared to Wa-1 strain ²⁹⁸ Neutralizing Antibody Responses: Delta and Beta variants were only available in those boosted with mRNA-1273 ²⁹⁸	No available data	Heterologous 1: 10.9 to 21.2-fold increase in pseudo virus neutralization assay (one volunteer did not have any against B.1.351) ²⁹⁷ Binding Antibody Responses: Baseline bAb levels for Delta were 34-45% lower compared to Wa-1 strain ²⁹⁸ Following boost, bAB levels for Delta were 15-36% lower compared to Wa-1 strain ²⁹⁸	No available data	Heterologous 1: Neutralizing activity against the wild type and variant strains showed higher neutralizing activity in the following order: wild type > B.1.617.2 > B.1.1.7 > B.1.351 ²⁹⁹	No available data	No available data
Reactogenicity	Adverse Events: 72-92% participants reported local pain or tenderness ²⁹⁸	Adverse Events: 75-86% participants reported local pain or tenderness ²⁹⁸	No available data	Adverse Events: 71-84% participants reported local pain or tenderness ²⁹⁸	No available data	Similar results to homologous booster administration	No available data	No available data

SS	PH	+

	Malaise, myalgias, and headaches were commonly reported ²⁹⁸	Malaise, myalgias, and headaches were commonly reported ²⁹⁸	Malaise, myalgias, and headaches were commonly reported ²⁹⁸		
	14.4% of the participants reported unsolicited adverse events ²⁹⁸	15.6% of participants reported unsolicited adverse events ²⁹⁸	12% of participants reported unsolicited adverse events ²⁹⁸		
Other	Heterologous 2 – Effectiveness in ≥50: 87.4% (95% CI, 84.9-89.4) against symptomatic COVID-19 ²⁹⁶ 93.1% (95% CI, 91.7-94.3) against symptomatic COVID-19 compared to unvaccinated ²⁹⁶			Ongoing clinical trial examining immunogenicity and safety of third dose vaccination with ChAdOx1 or BNT162b2 vaccine among adults who received full jab of CoronaVacliviii	

land Dose Vaccination with AstraZeneca or Pfizer COVID-19 Vaccine Among Adults Received Sinovac COVID-19 Vaccine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05049226

ANNEXES

	BNT162b2/ COMIRNATY (Pfizer- BioNTech, USA)	Spikevax/ Moderna COVID- 19 Vaccine/ mRNA-1273 (Moderna, USA)	Vaxzevria/ ChAdOx1 nCoV- 19/ AZD1222/ Covishield (AstraZeneca/Ox ford, UK, India)	Janssen COVID- 19 vaccine/Johnson & Johnson (Janssen, USA)	Sinopharm/BBIB P-CorV, China	Sinovac CoronaVac, China	COVAXIN/ BBV152 (Bharat Biotech, India)	Novavax/ NVX- CoV2373
				FURTHER INFORM	MATION			
Storage conditions	2°C to 8 °C (for 1 month)	2°C to 8 °C (for 1 month)	2°C until 8 °C	2°C to 8 °C (for 3 months)	2°C until 8 °C	2°C until 8 °C	2°C until 8 °C	2°C to 8 °C
Approving authorities	FDA (11.12.20) ^{lxix} ; EMA (21.12.20); WHO EUL (31.12.20); and list of countries (including Switzerland – approved on 20.12.20)	FDA (18.12.20); EMA (06.01.21); WHO EUL (30.04.21); and list of 51 countries (including Switzerland – approved 12.01.21)	FDA (awaiting on approval); EMA (29.01.21); WHO EUL (15.02.21); and list of 121 countries (Switzerland awaiting on approval)	FDA (27.02.21); EMA (11.03.21), WHO EUL (12.03.21), and list of 59 countries (including Switzerland – approved 22.03.21)	WHO EUL (07.05.21); and list of 55 countries (e.g., Argentina, Bahrain, Brazil, China, Indonesia, United Arab Emirates, Zimbabwe)	WHO EUL (01.06.21), and list of 33 countries (e.g., Albania, Chile, Egypt, Hong Kong, Malaysia, Tunisia, Turkey, Ukraine)	WHO EUL (03.11.21) and list of 9 countries (Guyana, Inidia, Iran, Mauritius, Mexico, Nepal, Paraguay, Philippines & Zimbabwe)	Waiting on approval (Not-yet- approved by countries or WHO for emergency use)

kix Pfizer-BioNTech's Comirnaty Vaccine received full FDA approval on 23 August 2021 for people age 16 and above, moving it beyond emergency use status. https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine

	IMMUNOGENICITY									
Immunogenicity	7-14 days after second dose: 18-55 years: GMT ranged from 1.7 to 4.6 times the GMT of the convalescent serum ³⁰¹ . 65-85 years: GMT ranged from 1.1 to 2.2 times the GMT of the convalescent serum ³⁰¹ .	14 days after second dose: 18-55 years: PRNT ₈₀ GMT 654.3 (95% CI, 460.1-930.5) ³⁰² . 56-70 years: PRNT ₈₀ GMT 878 (95% CI, 516-1494) ³⁰³ . ≥71 years: PRNT ₈₀ GMT 317 (95% CI, 181-557) ³⁰³ .	28 days after second dose median antibody titres: 18–55 years: 20,713 AU/mL [IQR 13,898 - 33,550] ³⁰⁴ 56–69 years: 16,170 AU/mL [IQR 10,233 - 40,353] ³⁰⁴ . ≥70 years: 17,561 AU/mL [IQR 9,705 - 37,796] ³⁰⁴ .	29 days after vaccination: 18-55 years: GMC 586 (95% CI, 445-771); GMT 224 (95% CI, 168-298)³0⁵. ≥65 years: GMC 312 (95% CI, 246-396); GMT 212 (95% CI, 163-266)³0⁵. 57 days after vaccination: 18-55 years: 754 (95% CI, 592-961); GMT 288 (95% CI, 221-376)³0⁵.	14 days after second dose: 18-55 years: GMT 211.2 (95% CI, 158.9-280.6) ³⁰⁶ . ≥60 years: GMT 131.5 (95% CI, 108.2-159.7) ³⁰⁶ .	Single dose (≥4 weeks): 37.7±57.08 IU/mI (min: 0, max: 317.25); 57.02% of participants did not develop sufficient antibody titres (<25.6 IU mI) Two doses (≥4 weeks): 194.61±174.88 IU/mI (min: 0, max: 677.82); 11.48% of participants did not develop sufficient antibody titres (<25.6 IU mI)³07. 2 weeks after second dose: 164.4 BAU/ mL³08 4 weeks after second dose: 94.8 BAU/ mL³08	Single dose (≥4 weeks: 43.8% seropositive for anti-spike antibody > 15 AU/mL³09 GMT 16.8 (95% CI, 15.80-17.88) for SARS-CoV-2 spike antibody titre³09 Two doses (≥4 weeks): 80.0% seropositive for anti-spike antibody > 15 AU/mL³09 GMT 48.3 (95% CI, 47.46-48.92) for SARS-CoV-2 spike antibody titre³09			

SSP	H	+	

						34.7 BAU/ mL ³⁰⁸		
Immunogenicity against the Mu variant	6.8-fold decrease in neutralizing titres when compared to convalescent sera ³¹⁰	Neutralizing titre similar to that of BNT162b2 sera ³¹⁰	Neutralizing titre similar to that of BNT162b2 sera ³¹⁰	No available data	No available data	No available data	No available data	No available data
				EFFICACY				
Single dose ^{lxx}	52% (95% CI, 29.5 to 68.4; starting at 12 days) or 82.2% (75.1 to 87.3; starting at ≥14 days) ³¹¹ . 91% (95% CI, 85- 94) ³¹² . ≥80 years: 71.4% (95% CI, 46.5-90.6) vaccine efficacy for symptomatic disease 14 days after one dose	95.2% (95% CI, 91.2.8 to 97.4; starting at >14 days) ¹⁰⁷ .	72.8% (starting at 22 days up to 60 days) ³¹⁴ . 88% (95% CI, 75-94) ³¹² . İxxiii ≥80 years: 80.4% (95% CI, 36.4-94.5) vaccine efficacy for symptomatic disease 14 days after one dose [United Kingdom, 18 Dec 2020 – 26 Feb 2021 ³¹³ ≥65 years:	Single dose vaccine	Unknown	35.1% (95% CI, -6.6 to -60.5) [conducted in a setting with high P.1 transmission] ³¹⁵ .	No available data	83.4% (95% CI, 73.6-89.5) starting at ≥14 days ⁴⁰

lxx Against SARS-COV-2 infection

bxiii Conducted between 8 December 2020 and 8 February 2021. Study sample = ≤1 million participants.

SSP	Н	+ SWIS

18 Fe ≥6 56 76 an 23 da va· [Ui 8 [Inited Kingdom, B Dec 2020 – 26 Bb 2021] ³¹³ 65 years: B''s (95% CI 19- B) at 28-34 days B (95% CI 3-81) at 35-48 B (95		56% (95% CI 19-76) at 28-34 days and 62% (95% CI 23-81) at 35-48 days post-vaccination [United Kingdom, 8 Dec 2020 – 15 Mar 2021] ³¹³ lxxiii	99.00 ((050) O				
90 at po pri info Two doses lxxiv 94 89 at po wit	fection ¹²²	94.1% (95% CI, 89.3-96.8) after median follow-up of less than 63 days ¹⁰⁷ 93.2% (95% CI, 91.0-94.8) ³¹⁶ Against severe disease: 98.2% (95% CI, 92.8-99.6) ³¹⁶	63.1% (95% CI, 51.8-71.7) starting at ≥14 days for two standard doses ³¹⁴ 80.7% (95% CI, 62.1-90.2) starting at ≥14 days for first low dose and standard second dose ³¹⁴ 66.7% (95% CI, 57.4-74.0) starting at ≥14 days for	66.9% (95% CI 59.0-73.4) after 14 days and 66.1% (95% CI 55.0-89.1) after 28 days for VE against moderate- severe-critical COVID-19 ³¹⁸ 76.7% (95% CI 54.6 to 89.1) after 14 days and 85.4% (95% CI 54.2 to 96.9) after 28 days for VE	After 14 days, efficacy against symptomatic cases was 72.8% (95% CI 58.1-82.4; in WIV04 vaccine) or 78.1% (95% CI 64.8 to 86.3; in HBO2 vaccine). ²⁰³	After 14 days, efficacy against symptomatic cases was 50.7% (95% CI 35.9 to 0-62.0). 113 99.17% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ³¹⁹ .	<u>Symptomatic</u> <u>SARS-CoV-2</u> <u>infection:</u> 77.8% (95% CI, 65.2-86.4) ³²⁰ <u>Severe</u> <u>symptomatic</u> <u>SARS-CoV-2</u> <u>infection:</u> 93.4 (95% CI, 57.1-99.8) ³²⁰ <u>Symptomatic</u> <u>COVID-19 in ≥60</u> years old:	89.7% (95% CI, 80.2-94.6) starting at ≥7 days ⁴⁰ 90.4% (95% CI, 82.9-94.6) ³²¹ 100% (95% CI, 87-100) against moderate-to- severe COVID- 19 ³²¹ 100% (95% CI, 34.6-100)

lxxi Does not differentiate between BNT162b2 and ChAdOx1 nCoV-19.

lxxiii Does not differentiate between BNT162b2 and ChAdOx1 nCoV-19.

lxxiv Against SARS-CoV-2 infection.

		Prevention against COVID-19 illness: 93.2% (95% CI, 91.0-94.8; United States) 316 Prevention against severe disease: 98.2% (95% CI, 92.8-99.6; United States) 316 Prevention against asymptomatic infection starting 14 days after second infection: 63.0% (95% CI, 56.6-68.5; United States) 316	pooled analysis efficacy ³¹⁴ Against mild-to-moderate symptomatic COVID-19 > 14 days after second injection: 21.9% (95% CI, -49.9 to 59.8; South Africa) [24 June – 09 November 2020] ³¹⁷	against severe- critical COVID- 19 ³¹⁸			67.8% (95% CI, 65.2-86.4) against symptomatic COVID-19 ³²⁰ Symptomatic COVID-19 in 18-59 years old: 79.4% (95% CI, 66.0-88.2) against symptomatic COVID-19 ³²⁰	against severe COVID-19 ³²¹ 90% (95% CI, 80-95) (≥7 days after second dose) ³²²
Against asymptomatic infection	90% (starting at 14 days) regardless of symptom status ³²³	63.0% (95% CI, 56.6-68.5) ³¹⁶	Statistically non- significant reduction of 22.2% (95% CI - 9.9 to 45.0) for asymptomatic cases 61.9% efficacy ³⁷	At day 71, vaccine efficacy against asymptomatic infections was 65.5% (95% CI 39.9 to 81.1) ³¹⁸ .	Efficacy against symptomatic and asymptomatic cases was 64% (95% CI 48.8 to 74.7; in WIV04 vaccine) or 73.5% (95% CI 60.6 to 82.2; in HBO2 vaccine) ²⁰³ .	Unknown	63.6 (95% CI, 29.0-82.4) efficacy against asymptomatic cases ³²⁰	Unknown

EFFICACY AGAINST VARIANTS

Alpha (B.1.1.7)	Two doses of the vaccine effectively neutralize the B.1.1.7 variant and the D614G substitution ³²⁴ .	NAbs remained high and consistent with titres of the wildtype for the B.1.1.7 variant ³²⁵ .	70.4% (95% CI, 43.6-84.5) against symptomatic infection with alpha variant (B.1.1.7); 28.9% (95% CI, -77.1 to 71.4) against asymptomatic infection with B.1.1.7 ⁹⁶ .	3.6-fold reduction in neutralization capacity when compared to wild-type.	Demonstrated reduced neutralizing capacity. However, there were no differences in the NAbs titres against B.1.351 in vaccinated individuals vs. those naturally infected, suggesting the vaccine has a similar level of protection against infection as natural infections ³²⁶ .	10.4-fold reduction in neutralization capacity when compared to natural infection sera ³¹⁹ . 85.83% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ³¹⁹ . Neutralization decreased by 4.1-fold when compared to wild-type ³²⁷ .	PRNT ₅₀ 0.8 when compared with wild type against Alpha (no significant difference in neutralization capacity) ³²⁸	Two dose efficacy against the B.1.1.7 variant 86.3% (95% CI, 71.3-93.5) ⁴⁰ 93.6% (95% CI, 81.7-97.8) against the Alpha variant ³²¹ Against non-B.1.1.7 variant 96% (95% CI, 74-99.5) (≥7 days after second dose) ³²² Against B.1.1.7 variant 86% (95% CI, 71-94) (≥7 days after second dose) ³²²
Beta (B.1.351)	Neutralization was diminished by a factor of 5. Despite this, the BNT162b2 mRNA vaccine still provides some	NAbs were 6-fold lower. Nevertheless, NAbs were still found to be protective ³²⁵ .	Two doses of the vaccine had no efficacy against the B.1.351 (VE = 21.9% ; 95% CI, -49.9 to 59.8) ³¹⁷ .	Efficacy against moderate-severe-critical Covid-19 due to the variant was 52.0% (>14 days) and 64.0% (>28 days). Efficacy against	No published data	NT _{GM} 35.03 (95% CI, 27.46-44.68); 8.75-fold reduction in neutralization capacity when compared to	GMT 61.57 (95% CI, 36.34-104.3) against Beta variant with significant reduction in neutralization titre ³³³	51.0% (95% CI, -0.6-76.2) efficacy against B.1.351 variant ³³⁴

SSP	Н	+

	protection against B.1.351 ³²⁹ 100% (95% CI, 53.5-100) ³³⁰ .		Against mild-to-moderate symptomatic COVID-19 associated with B.1.351 variant >14 days after second injection: 10.4% (95% -76.8 to 54.8; South Africa) [24 June – 09 November 2020] ³¹⁷	severe-critical COVID-19 was 73.1% (>14 days) and 81.7% (>28 days) ³¹⁸ . Demonstrated 3.6-fold reduction in neutralization sensitivity ³³¹ . Neutralization titres were decreased by 6.7-fold ³³² .		natural infection sera ³¹⁹ . 82.5% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ³¹⁹ .		
Gamma (P.1)	Single dose: ≥21 days: 83% against hospitalization and death ³³⁵ . Two doses: ≥14 days: 98% against hospitalization and death ³³⁵ .	3.2-fold reduction in neutralization capacity when compared to wild-type ³³⁶ .	Single dose: ≥21 days: 94% against hospitalization and death ³³⁵ . Two doses: 64% (95% CI, -2-87) [n=18] ³³⁷ Efficacy against Zeta (P.2) [2 doses]: 69% (95% CI, 55-78) ³³⁷	Demonstrated 3.4-fold reduction in neutralization sensitivity ³³¹ .	No published data	49.6% against P.1 (>14 days after 1st dose) ³¹⁵ . Neutralization decreased by 7.5-fold when compared to wild-type ³²⁷ .	No available data	No available data
Delta (1.671.2)	Reduced NAb activity relative to B.1.1.7 strain ³³⁸ .	2.1-fold reduction in neutralization capacity when compared to wild-type ³³⁶ .	Single dose: ≥21 days: 90% against hospitalization and death ³³⁵ .	Demonstrated 1.6-fold reduction in neutralization sensitivity ³³¹ .	Demonstrated reduced neutralizing capacity. However, there were no	NT _{GM} 24.48 (95% CI,19.2-31.2) ³¹⁹ . 69.17% of NAb titres were above or equal to the	65.2 (95% CI, 33.1-83.0) estimated efficacy ¹¹⁶	No available data

SS	P	Н	+	

				Neutralization titres were decreased by 5.4-fold ³³² .	differences in the NAbs titres against B.1.617.2 in vaccinated individuals vs. those naturally infected, suggesting the vaccine has a similar level of protection against infection as natural infections ³²⁶ .	Nab positivity cut- off (20 units) against wild- type ³¹⁹ .	GMT 68.97 (95% CI, 24.72-192.4) against Delta variant with significant reduction in neutralization titre ³³³	
			PH	ASE III TRIALS RES	ULTS ^{lxxv}			
Number of participants (vaccine/ placebo)	43,448 (21,720/ 21,728) ¹²²	30,420 (15,210/15,210) ¹⁰⁷	17,178 (8597/8581) ³¹⁴	39,321 (19,630/19,691) ³¹⁸	26,917 (13,459/13458); or 26,914 (13,465/13,458) ²⁰³	9,823 (4,953/4,870) ¹¹³	25,798 (12,899/12899) ¹¹⁶	14,039 (7,020/7,019) ⁴⁰
Total COVID- 19 cases (vaccine/ control)	170(8/162) ¹²²	196 (11/185) ¹⁰⁷	332 (84/248) ³¹⁴	464 (116/348) ³¹⁸	121(26/95) or 116(21/95) ²⁰³	253(85/168)113	130 (24/106) ¹¹⁶	106(10/96)40

Phase III trials were conducted between 27 July and 14 November 2020 for BNT162b2/ COMIRNATY, 27 July and 23 October 2020 for Spikevax/ Moderna, 23 April and 6 December 2020 for Vaxzevria/ ChAdOx1 nCoV-19/ AZD1222/ Covishield, 21 September 2020 and 22 January 2021 for Janssen Covid-19 vaccine/ Johnson & Johnson, 16 July and 20 December 2020 for Sinopharm/ BBIB-CorV, 21 July and 16 December 2020 for the Sinovac/ CoronaVac vaccine, 16 November 2020 and 7 January 2021 for the COVAXIN vaccine, and 28 September 2020 and 28 November 2020 for the Novavax vaccine. All trials were conducted prior to the transmission of the more contagious variant strains, particularly the delta variant (B.1.617.2). Studies are currently ongoing to determine the effectiveness of the vaccines against the delta variant.

SSP	Н	+

Efficacy estimates in Phase III trials	Starting from 7 days after 2nd dose: 95.0% (95% CI, 90.3 to 97.6) in population without prior SARS-CoV-2 infection. Efficacy of 94.6% (95% CI, 89.9 to 97.3) in population with or without prior infection. 100% among adolescents (12-15 years old) ¹²² .	After a median follow-up of less than 63 days: Efficacy of 94.1% (95% CI, 89.3 to 96.8; P<0.001). 100% among adolescents (12 to <18 years old) ¹⁰⁷ .	Two standard doses: efficacy was 63-1% (95% CI 51.8 to 71.7; ≥14 days) while those with first low dose and standard 2nd dose the efficacy was 80.7% (95% CI 62.1 to 90.2). Pooled analysis efficacy was 66.7% (95% CI 57.4 to 74.0). For any nucleic acid amplification test-positive swab: efficacy was 54.1% (95% CI 44.7 to 61.9)³14.	VE against moderate-severe-critical Covid-19 was 66.9% (95% CI 59.0 to 73.4) after 14 days post vaccine administration, and 66.1% (95% CI 55.0 to 89.1) after 28 days. VE against severe-critical COVID-19 cases was 76.7% (95% CI 54.6 to 89.1) after 14 days and 85.4% (95% CI 54.2 to 96.9) after 28 days ³¹⁸ .	After 14 days, efficacy against symptomatic cases was 72.8% (95% CI 58.1 to 82.4; in WIV04 vaccine) or 78.1% (95% CI 64.8 to 86.3; in HBO2 vaccine) ²⁰³ .	After 14 days, efficacy against symptomatic cases was 50.7% (95% CI 35.9 to 0-62.0). ¹¹³	77.8% (95% CI, 65.2-86.4) against symptomatic COVID-19 starting at ≥14 days after second dose ¹¹⁶	83.4% (95% CI, 73.6-89.5) starting at ≥14 days after first dose ⁴⁰ 89.7% (95% CI, 80.2-94.6) starting at ≥7 days after second dose ⁴⁰
Efficacy against hospitalization and death	100% (after 7 days) ¹²²	100% (≥14 days) ¹⁰⁷	100% (after 21 days) ³¹⁴	76.7% (≥14 days) or 85.4% (≥28 days) ³¹⁸	100% (>14 days) ²⁰³	100% (>14 days) ¹¹³	93.4% (>14 days) against severe COVID-19 ¹¹⁶	100% (after 7 days) ⁴⁰ .
Phase III clinical trial serious adverse events	Serious adverse events were observed in a similar proportion of vaccine (0.6%) and placebo (0.5%) recipients. These events also occur at a similar frequency within	The frequency of grade 3 adverse events was similar in both the vaccine (1.5%) and placebo groups (1.3). Serious adverse events were observed in a similar proportion	Serious adverse events were balanced across the study arms. 79 cases occurred in the vaccine group and 89 cases in the placebo group – 3 cases were considered related to the	Serious adverse events were reported in 0.4% of vaccine recipients and 0.4% of placebo recipients. Seven of the serious adverse events were considered to be related to	A cross-sectional survey collected data on adverse events following vaccination in the UAE - none of the symptoms were of serious nature or required hospitalization ¹¹² .	Overall incidence of serious adverse events was 0.5% (31 in placebo group and 33 in vaccine group). All adverse events were determined to be unrelated to the vaccine ¹¹³ .	Rates of local and systemic AEs reported in the BBV152 group as mild (11·2%), moderate (0·8%), or severe (0·3%) were comparable	Phase II: Nine serious adverse events were reported, only one of which was assessed as related to the vaccine: acute colitis ³⁴⁰ .

SSP	Н	+ SWIS

	the general population ^{103,339} .	in both groups (0.6%). 3 Bell's Palsy cases occurred in the vaccine group and one Bell's Palsy case occurred in the placebo group ¹⁰⁷ .	experimental or control vaccine (out of 11 636 vaccine recipients): transverse myelitis, haemolytic anaemia and a case of fever higher than 40°C 109.	the vaccine: Guillain-Barré syndrome (1), pericarditis (1), brachial radiculitis (1), hypersensitivity (1), Bell's Palsy (2), & severe generalized weakness, fever & headache (1) ³¹⁸ .			to the placebo group ¹¹⁶ 15 deaths, none considered related to the vaccine or placebo ¹¹⁶	
				PHASE III TI	RIAL OTHER			
Comments	Specific populations were excluded (HIV and immunocompromi sed patients, and pregnant women).	Calculation of efficacy were not based on the total number of confirmed Covid-19 cases.		2-DOSE EFFICACY Efficacy against symptomatic (moderate to severe/ critical) SARS-CoV-2 infection 94% (95% CI, 58- 100) in the US. 75% (95% CI, 55- 87) globally. ²⁰ Efficacy against severe/ critical SARS-CoV-2 infection	Only 2 severe cases occurred in the control group and none in the vaccine group (very few cases to get a reliable estimate).	-	-	Novavax is currently awaiting FDA, EMA, and WHO EUL approval. Upcoming information regarding results of clinical trials or approval will be updated in upcoming reports

100% (95% CI, 33-100)²⁰

		VACCINE PRODUCTION SITES							
	BNT162b2/ COMIRNATY (Pfizer- BioNTech, USA) ^{Ixxvi}	Spikevax/ Moderna COVID- 19 Vaccine/ mRNA-1273 (Moderna, USA) ^{lxxvii}	Vaxzevria/ ChAdOx1 nCoV- 19/ AZD1222/ Covishield (AstraZeneca/Oxf ord, UK, India) ^{Ixxviii}	Janssen COVID- 19 vaccine/Johnson & Johnson (Janssen, USA) ^{lxxix}	Sinopharm/BBIB P-CorV, China ^{lxxx}	Sinovac CoronaVac, China ^{lxxxi}	COVAXIN / BBV152 (Bharat Biotech, India)	Novavax/ NVX- CoV2373	
EUL holder	BioNTech Manufacturing GmbH (Germany)	ModernaTX, Inc. (USA) ¹ Moderna Biotech (Spain) ²	AstraZeneca AB (Sweden)	Janssen-Cilag International NV (Belgium)	Beijing Institute of Biological Products Co., Ltd. (BIBP) (China)	Sinovac Life Sciences Co., Ltd. (China)	Bharat Biotech International Limited (India)	Novavax (USA)	

WHO recommendation BioNTech Tozinameran - COVID-19 mRNA vaccine (nucleoside modified) - COMIRNATY. WHO. https://extranet.who.int/pqweb/vaccines/who-recommendation-covid-19-mrna-vaccine-nucleoside-modified-comirnaty

^{1.} WHO recommendation ModernaTX, Inc/USFDA COVID-19 mRNA vaccine (nucleoside modified). WHO. https://extranet.who.int/pqweb/vaccines/who-recommendation-modernatx-incusfda-covid-19-mrna-vaccine-nucleoside-modified

2. WHO recommendation Moderna COVID-19 mRNA Vaccine (nucleoside modified). WHO. https://extranet.who.int/pqweb/vaccines/covid-19-mrna-vaccine-nucleoside-modified

bxxviii WHO recommendation AstraZeneca/ EU approved sites COVID-19 vaccine (ChAdOx1-S) [recombinant]. WHO. https://extranet.who.int/pgweb/vaccines/covid-19-vaccine-chadox1-s-recombinant-0

bxix WHO recommendation Janssen-Cilag International NV (Belgium) COVID-19 Vaccine (Ad26.COV2-S [recombinant]). WHO. https://extranet.who.int/pqweb/vaccines/who-recommendation-janssen-cilag-international-nv-belgium-covid-19-vaccine-ad26cov2-s

bxx WHO recommendation COVID-19 vaccine BIBP/Sinopharm. WHO. https://extranet.who.int/pgweb/vaccines/who-recommendation-covid-19-vaccine-bibp

bxxi WHO recommendation of Sinovac COVID-19 vaccine (Vero Cell [Inactivated]) - CoronaVac. WHO. https://extranet.who.int/pqweb/vaccines/who-recommendation-sinovac-covid-19-vaccine-vero-cell-inactivated-coronavac

SSP	Н	+

Production sites (Drug substance)	BioNTech Manufacturing GmbH (Mainz, Germany) BioNTech Manufacturing Marburg (Marburg, Germany) Rentschler Biopharma SE (Laupheim, Germany) Wyeth BioPharma Division of Wyeth Pharmaceuticals (USA)	Lonza Biologics, Inc., (USA) ¹ Moderna TX, Inc. (USA) ¹ Lonza AG (Switzerland) ²	Henogen S.A (Belgium) Catalent Maryland, Inc. (USA) Oxford Biomedica (UK) Ltd. (United Kingdom) SK Bioscience (Republic of Korea) Halix B.V (Netherlands) WuXi Biologics (China)	Janssen Vaccines & Prevention B.V. (The Netherlands) Janssen Biologics B.V. (The Netherlands) Emergent Manufacturing Operations Baltimore LLC (USA)	Beijing Institute of Biological Products Co., Ltd. (China)	Sinovac Life Sciences Co., Ltd. (China)	-	Novavax (Bohumil, Czech Republic)
Production sites (Drug product)	Baxter Oncology GmbH (Halle/ Westfallen, Germany) BioNTech Manufacturing GmbH (Mainz, Germany) Pfizer Manufacturing Belgium NV (Belgium)	Baxter Pharmaceutical Solutions, LLC. (USA) ¹ Catalent Indiana, LLC. (USA) ¹ Rovi Pharma Industrial Services, S.A. (Spain) ²	Catalent Anagni (Italy) CP Pharmaceuticals (United Kingdom) IDT Biologika (Germany) SK Bioscience (Republic of Korea)	Janssen Biologics B.V. (The Netherlands) Janssen Pharmaceutica NV (Belgium) Aspen SVP. (South Africa) Catalent Indiana LLC. (USA)	Beijing Institute of Biological Products Co., Ltd. (China)	Sinovac Life Sciences Co., Ltd. (China)	-	Novavax (Bohumil, Czech Republic)

SSP	Н	+	

	Novartis Pharma Stein AG (Switzerland) Mibe GmbH Arzneimittel (Brehna, Germany) Delpharm Saint- Remy (France) Sanofi-Aventis Deutschland GmbH (Germany)	Universal Farma, S.L. ("Chemo") (Spain) Amylin Ohio LLC (USA)	Grand River Aseptic Manufacturing Inc. (USA) Catalent Anagni S.R.L. (Italy)				
Diluent suppliers	Pfizer Perth, Australia - Fresenius Kabi, USA		-	-	-	-	-

References

- European Medicines Agency. Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. European Medicines Agency. https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters. Published 2021. Updated 4 October. Accessed 5 October, 2021.
- Hall VJ, Foulkes S, Saei A, et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). SSRN - Preprint. 2021. https://doi.org/10.2139/ssrn.3790399
- Pilishvili T, Gierke R, Fleming-Dutra KE, et al. Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N Engl J Med. 2021. https://doi.org/10.1056/NEJMoa2106599
- 4. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2114114
- 5. Martínez-Baz I, Trobajo-Sanmartín C, Miqueleiz A, et al. Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2021;26(39). https://doi.org/10.2807/1560-7917.ES.2021.26.39.2100894
- 6. Rahmani K, Shavaleh R, Forouhi M, et al. Effectiveness of COVID-19 Vaccines and Post-vaccination SARS-COV 2 Infection, Hospitalization, and Mortality: a Systematic Review and Meta-analysis of Observational Studies. *medRxiv*. 2021:2021.2011.2003.21265819. https://doi.org/10.1101/2021.11.03.21265819
- 7. Young-Xu Y, Korves C, Roberts J, et al. Coverage and Estimated Effectiveness of mRNA COVID-19 Vaccines Among US Veterans. *JAMA Netw Open.* 2021;4(10):e2128391. https://doi.org/10.1001/jamanetworkopen.2021.28391
- 8. Starrfelt J, Buanes EA, Juvet LK, et al. Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: a national cohort study, January September 2021. *medRxiv*. 2021:2021.2011.2012.21266222. https://doi.org/10.1101/2021.11.12.21266222
- 9. Public Health England. *Public Health England vaccine effectiveness report.* 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/989360/PHE_COVID-19 vaccine effectiveness report March 2021 v2.pdf.
- 10. Thomson EC, Rosen LE, Shepherd JG, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. *Cell.* 2021;184(5):1171-1187.e1120. https://doi.org/10.1016/j.cell.2021.01.037
- Chung H, He S, Nasreen S, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. *BMJ*. 2021;374:n1943. https://doi.org/10.1136/bmj.n1943
- 12. Lumley SF, Rodger G, Constantinides B, et al. An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare

- workers by antibody and vaccination status. *Clinical infectious diseases*. 2021. https://doi.org/10.1093/cid/ciab608
- 13. Singh C, Naik BN, Pandey S, et al. Effectiveness of COVID-19 Vaccine in Preventing Infection and Disease Severity: A Case Control Study from an Eastern State of India. *Epidemiology and Infection*. 2021:1-20. https://doi.org/10.1017/S0950268821002247
- Corchado-Garcia J, Puyraimond-Zemmour D, Hughes T, et al. Real-World Effectiveness of Ad26.COV2.S Adenoviral Vector Vaccine for COVID-19. SSRN -Preprint. 2021. https://doi.org/10.2139/ssrn.3835737
- Polinski JM, Weckstein AR, Batech M, et al. Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine. medRxiv. 2021:2021.2009.2010.21263385. https://doi.org/10.1101/2021.09.10.21263385
- Self WH, Tenforde MW, Rhoads JP, IVY Network. Vaccines in Preventing COVID-19
 Hospitalizations Among Adults Without Immunocompromising Conditions. *Morbidity & Mortality Weekly Report.* 2021. https://doi.org/10.15585/mmwr.mm7038e1
- 17. Braeye T, Cornelissen L, Catteau L, et al. Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of Belgian contact tracing data, January-June 2021. *Vaccine*. 2021;39(39):5456-5460. https://doi.org/https://doi.org/10.1016/j.vaccine.2021.08.060
- 18. Ranzani OT, Leite RdS, Castilho LD, et al. Vaccine effectiveness of Ad26.COV2.S against symptomatic COVID-19 and clinical outcomes in Brazil: a test-negative study design. *medRxiv*. 2021:2021.2010.2015.21265006. https://doi.org/10.1101/2021.10.15.21265006
- 19. Corchado-Garcia J, Zemmour D, Hughes T, et al. Analysis of the Effectiveness of the Ad26.COV2.S Adenoviral Vector Vaccine for Preventing COVID-19. *JAMA Netw Open.* 2021;4(11):e2132540. https://doi.org/10.1001/jamanetworkopen.2021.32540
- 20. Johnson & Johnson . Johnson & Johnson Announces Real-World Evidence and Phase 3 Data Confirming Strong and Long-Lasting Protection of Single-Shot COVID-19 Vaccine in the U.S. Johnson & Johnson. https://www.jnj.com/johnson-johnson-announces-real-world-evidence-and-phase-3-data-confirming-strong-and-long-lasting-protection-of-single-shot-covid-19-vaccine-in-the-u-s. Published 2021. Updated 21 September. Accessed 21 September, 2021.
- 21. Sadoff J, Struyf F, Douoguih M. A plain language summary of how well the single-dose Janssen vaccine works and how safe it is. *Future Virol.* 2021;16(11):725-739. https://doi.org/10.2217/fvl-2021-0199
- Jahromi M, Al Sheikh MH. Partial protection of Sinopharm vaccine against SARS COV2 during recent outbreak in Bahrain. *Microb Pathog.* 2021;158:105086. https://doi.org/10.1016/j.micpath.2021.105086
- 23. Jara A, Undurraga EA, González C, et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2107715
- 24. Cerqueira-Silva T, Oliveira VdA, Pescarini J, et al. Influence of age on the effectiveness and duration of protection in Vaxzevria and CoronaVac vaccines. *medRxiv.* 2021:2021.2008.2021.21261501. https://doi.org/10.1101/2021.08.21.21261501
- 25. Desai D, Khan AR, Soneja M, et al. Effectiveness of an inactivated virus-based SARS-CoV-2 vaccine, BBV152, in India: a test-negative, case-control study. *Lancet Infect Dis.* 2021. https://doi.org/10.1016/s1473-3099(21)00674-5
- 26. A Study Looking at the Effectiveness and Safety of a COVID-19 Vaccine in South African Adults. In. ClinicalTrials.gov2021.

- https://clinicaltrials.gov/ct2/show/NCT04533399?term=Novavax&cond=Covid19&draw=2.
- 27. A Study Looking at the Effectiveness, Immune Response, and Safety of a COVID-19 Vaccine in Adults in the United Kingdom. In. ClinicalTrials.gov2021. https://clinicaltrials.gov/ct2/show/NCT04583995?term=Novavax&cond=Covid19&draw=2&rank=2.
- 28. Paris C, Perrin S, Hamonic S, et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. *Clinical Microbiology and Infection*. 2021. https://doi.org/10.1016/j.cmi.2021.06.043
- 29. Katz MA, Bron Harlev E, Chazan B, et al. Covid-19 Vaccine Effectiveness in Healthcare Personnel in six Israeli Hospitals (CoVEHPI). *medRxiv*. 2021:2021.2008.2030.21262465. https://doi.org/10.1101/2021.08.30.21262465
- Puranik A, Lenehan PJ, Silvert E, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv. 2021:2021.2008.2006.21261707. https://doi.org/10.1101/2021.08.06.21261707
- 31. Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. *The Lancet.* 2021;398(10309):1407-1416. https://doi.org/10.1016/S0140-6736(21)02183-8
- 32. Irizarry RA, Robles-Fontan MM, Nieves EG, Cardona-Gerena I, Irizarry RA. Time-Varying Effectiveness of Three Covid-19 Vaccines in Puerto Rico. *medRxiv*. 2021:2021.2010.2017.21265101. https://doi.org/10.1101/2021.10.17.21265101
- 33. Fabiani M, Ramigni M, Gobbetto V, Mateo-Urdiales A, Pezzotti P, Piovesan C. Effectiveness of the comirnaty (BNT162b2, BioNTech/Pfizer) vaccine in preventing SARS-CoV-2 infection among healthcare workers, Treviso province, Veneto region, Italy, 27 December 2020 to 24 March 2021. *Eurosurveillance*. 2021;26(17):1-7. https://doi.org/10.2807/1560-7917.ES.2021.26.17.2100420
- 34. Knobel P, Serra C, Grau S, et al. Coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness in asymptomatic healthcare workers. *Infection Control & Hospital Epidemiology*. 2021:1-2. https://doi.org/10.1017/ice.2021.287
- 35. Gomes D, Beyerlein A, Katz K, et al. Is the BNT162b2 COVID-19 vaccine effective in elderly populations? Results from population data from Bavaria, Germany. *PLoS One.* 2021;16(11):e0259370. https://doi.org/10.1371/journal.pone.0259370
- 36. Tande AJ, Pollock BD, Shah ND, Binnicker M, Berbari EF. mRNA Vaccine Effectiveness Against Asymptomatic SARS-CoV-2 Infection Over a Seven-Month Period. *Infect Control Hosp Epidemiol.* 2021:1-7. https://doi.org/10.1017/ice.2021.399
- 37. McQuade ETR, Platts-Mills JA. ChAdOx1 nCoV-19 vaccine: asymptomatic efficacy estimates. *The Lancet.* 2021;397(10291):2247-2248. https://doi.org/10.1016/S0140-6736(21)00951-X
- 38. Bhatnagar T, Chaudhuri S, Ponnaiah M, et al. Effectiveness of BBV152/Covaxin and AZD1222/Covishield Vaccines Against Severe COVID-19 and B.1.617.2/Delta Variant in India, 2021: A Multi-Centric Hospital-Based Case-Control Study. SSRN. 2021. https://doi.org/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955739
- 39. Paixão ES, Wong KL, Alves FJO, de Araújo Oliveira V, Cerqueira-Silva T, Júnior JB. Effectiveness of the CoronaVac Vaccine in Prevention of Symptomatic and Progression to Severe COVID-19 in Pregnant Women in Brazil. SSRN. 2021. https://ssrn.com/abstract=3962119.

- Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. New England Journal of Medicine. 2021. https://doi.org/10.1056/NEJMoa2107659
- 41. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. *New England Journal of Medicine*. 2021;385(7):585-594. https://doi.org/10.1056/NEJMoa2108891
- 42. Nasreen S, Chung H, He S, et al. Effectiveness of COVID-19 vaccines against variants of concern in Ontario, Canada. *medRxiv.* 2021:2021.2006.2028.21259420. https://doi.org/10.1101/2021.06.28.21259420
- 43. Seppälä E, Veneti L, Starrfelt J, et al. Vaccine effectiveness against infection with the delta (b.1.617.2) variant, norway, april to august 2021. *Eurosurveillance*. 2021;26(35). https://doi.org/10.2807/1560-7917.ES.2021.26.35.2100793
- 44. Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. *The Lancet.* 2021;397(10293):2461-2462. https://doi.org/10.1016/S0140-6736(21)01358-1
- 45. Pouwels KB, Pritchard E, Matthews P, et al. Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. *medRxiv*. 2021:2021.2008.2018.21262237. https://doi.org/10.1101/2021.08.18.21262237
- 46. Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. *Nature Medicine*. 2021. https://doi.org/10.1038/s41591-021-01446-y
- 47. Bruxvoort K, Sy LS, Qian L, et al. Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. 2021:2021.2009.2029.21264199. https://doi.org/10.1101/2021.09.29.21264199
- 48. Chen Y, Shen H, Huang R, Tong X, Wu C. Serum neutralising activity against SARS-CoV-2 variants elicited by CoronaVac. *The Lancet Infectious Diseases*. 2021;21(8):1071-1072. https://doi.org/10.1016/S1473-3099(21)00287-5
- 49. Gidari A, Sabbatini S, Bastianelli S, et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. *Journal of Infection*. 2021. https://doi.org/10.1016/j.jinf.2021.07.019
- 50. Ranzani O, Hitchings M, Neto M, et al. Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study. *medRxiv preprint*. 2021. https://doi.org/10.1101/2021.05.19.21257472
- 51. World Health Organization. The Sinovac-CoronaVac COVID-19 vaccine: What you need to know. World Health Organization. <a href="https://www.who.int/news-room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw4eaJBhDMARIsANhrQADBYtFm2zMvzbfjthveE2gmCJTRI_jPc4HPIIFSwdZpzTix45gmEM0aAml9EALw_wcB. Published 2021. Updated 2 September 2021. Accessed 8 September, 2021.
- 52. State of Israel Ministry of Health. Vaccine efficacy among those first vaccinated. https://www.gov.il/BlobFolder/reports/vaccine-efficacy-safety-follow-up-committee/he/files-publications-corona-two-dose-vaccination-data.pdf Published 2021. Accessed 25 August, 2021.
- 53. Andrews N, Tessier E, Stowe J, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK *Public Health England Preprint*. 2021. https://khub.net/documents/135939561/338928724/Vaccine+effectiveness+and+durat

- ion+of+protection+of+covid+vaccines+against+mild+and+severe+COVID-19+in+the+UK.pdf/10dcd99c-0441-0403-dfd8-11ba2c6f5801.
- Nanduri S, Pilishvili T, Derado G, Schrag SJ. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant - National Healthcare Safety Network, March 1–August 1. Morbidity & Mortality Weekly Report. 2021;70(34):163-1166. https://doi.org/10.15585/mmwr.mm7034e3
- 55. Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. Breakthrough SARS-CoV-2 infections in 620,000 U.S. Veterans, February 1, 2021 to August 13, 2021. medRxiv. 2021:2021.2010.2013.21264966.

 https://doi.org/10.1101/2021.10.13.21264966
- Mayo Foundation for Medical Education and Research (MFMER). Do COVID-19 vaccines protect against the variants? Mayo Clinic. Published 2021. Updated 24 August 2021. Accessed 8 September, 2021.
- 57. Chin ET, Leidner D, Zhang Y, et al. Effectiveness of the mRNA-1273 Vaccine during a SARS-CoV-2 Delta Outbreak in a Prison. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMc2114089
- 58. Mlcochova P, Kemp SA, Shanker Dhar M, et al. SARS-CoV-2 B.1.617.2 Delta variant replication, sensitivity to neutralising antibodies and vaccine breakthrough. *bioRxiv*. 2021:2021.2005.2008.443253. https://doi.org/10.1101/2021.05.08.443253
- 59. Li X-n, Huang Y, Wang W, et al. Efficacy of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. *Emerging Microbes & Infections*. 2021:1-32. https://doi.org/10.1080/22221751.2021.1969291
- 60. Uriu K, Kimura I, Shirakawa K, et al. Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMc2114706
- 61. Clifford S, Waight P, Hackman J, et al. Effectiveness of BNT162b2 and ChAdOx1 against SARS-CoV-2 household transmission a prospective cohort study in England. *medRxiv*. 2021:2021.2011.2024.21266401. https://doi.org/10.1101/2021.11.24.21266401
- 62. Stowe J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against hospital admission with the delta (B.1.617.2) variant *Public Health Enland Publishing Preprint*. 2021. https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view_file/479607329? com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_v2WsRK3ZlEig_redirect=https%3A%2F%2F https://khub.net/wsa443%2Fweb%2Fphe-national%2Fpublic-library%2F-%2Fdocument_library%2Fv2WsRK3ZlEig%2Fview%2F479607266.
- 63. Foley KE. J&J shot effective against Delta variant in large South Africa study. Politico. https://www.politico.eu/article/johnson-johnson-coronavirus-vaccine-delta-variant/. Published 2021. Updated 6 August 2021. Accessed 7 September, 2021.
- de Gier B, Andeweg S, Joosten R, et al. Vaccine effectiveness against SARS-CoV-2 transmission and infections among household and other close contacts of confirmed cases, the Netherlands, February to May 2021. *Eurosurveillance*. 2021;26(31). https://doi.org/10.2807/1560-7917.ES.2021.26.31.2100640
- 65. Tenforde MW, Self WH, Naioti EA, et al. Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults

- United States, March–July 2021. *Morbidity & Mortality Weekly Report.* 2021;70(34):1156-1162. https://doi.org/10.15585/mmwr.mm7034e2
- 66. Grannis SJ, Rowley EA, Ong TC, et al. Interim Estimates of COVID-19 Vaccine Effectiveness Against COVID-19–Associated Emergency Department or Urgent Care Clinic Encounters and Hospitalizations Among Adults During SARS-CoV-2 B.1.617.2 (Delta) Variant Predominance Nine States, June–August 2021. Morbidity & Mortality Weekly Report. 2021;70(37):1291–1293. https://www.cdc.gov/mmwr/volumes/70/wr/mm7037e2.htm.
- 67. Tartof SY, Slezak JM, Fischer H, et al. Six-Month Effectiveness of BNT162B2 mRNA COVID-19 Vaccine in a Large US Integrated Health System: A Retrospective Cohort Study. SSRN Preprint. 2021. https://doi.org/10.2139/ssrn.3909743
- 68. Sheikh A, Robertson C, Taylor B. BNT162b2 and ChAdOx1 nCoV-19 Vaccine Effectiveness against Death from the Delta Variant. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMc2113864
- 69. Johnson & Johnson. Positive New Data for Johnson & Johnson Single-Shot COVID-19 Vaccine on Activity Against Delta Variant and Long-lasting Durability of Response. Johnson & Johnson. https://www.jnj.com/positive-new-data-for-johnson-johnson-single-shot-covid-19-vaccine-on-activity-against-delta-variant-and-long-lasting-durability-of-response. Published 2021. Updated 1 July 2021. Accessed 8 September, 2021.
- 70. Hu Z, Tao B, Li Z, et al. Effectiveness of inactive COVID-19 vaccines against severe illness in B.1.617.2 (Delta) variant-infected patients in Jiangsu, China. *medRxiv*. 2021:2021.2009.2002.21263010. https://doi.org/10.1101/2021.09.02.21263010
- 71. Israel A, Merzon E, Schäffer AA, et al. Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection in a large cohort. *medRxiv*. 2021:2021.2008.2003.21261496. https://doi.org/10.1101/2021.08.03.21261496
- 72. Salvagno GL, Henry B, Pighi L, De Nitto S, Lippi G. Total Anti-SARS-CoV-2 Antibodies Measured 6 Months After Pfizer-BioNTech COVID-19 Vaccination in Healthcare Workers. SSRN- Preprint. 2021. https://doi.org/10.2139/ssrn.3915349
- 73. Collier A-rY, Yu J, McMahan K, et al. Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines. *New England Journal of Medicine*. 2021;385(21):2010-2012. https://doi.org/10.1056/NEJMc2115596
- 74. Barin B, Kasap U, Selçuk F, Volkan E, Ülückan O. Longitudinal Comparison of SARS-CoV-2 Anti-Spike RBD IgG antibody Responses After CoronaVac, BNT162b2, ChAdOx1 nCoV-19 Vaccines and Evaluation of a Single Booster Dose of BNT162b2 or CoronaVac After a Primary CoronaVac Regimen. SSRN Preprint. 2021. https://ssrn.com/abstract=3929973.
- 75. Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2114583
- 76. Doria-Rose N, Suthar MS, Makowski M, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. *New England Journal of Medicine*. 2021;384(23):2259-2261. https://doi.org/10.1056/NEJMc2103916
- 77. Flaxman A, Marchevsky N, Jenkin D, et al. Tolerability and Immunogenicity After a Late Second Dose or a Third Dose of ChAdOx1 nCoV-19 (AZD1222). SSRN Preprint. 2021. https://doi.org/10.2139/ssrn.3873839
- 78. Sadoff J, Le Gars M, Cardenas V, et al. Durability of antibody responses elicited by a single dose of Ad26.COV2.S and substantial increase following late boosting.

- *medRxiv.* 2021:2021.2008.2025.21262569. https://doi.org/10.1101/2021.08.25.21262569
- 79. Barouch DH, Stephenson KE, Sadoff J, et al. Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. *New England Journal of Medicine*. 2021. https://doi.org/http://doi.org/10.1056/NEJMc2108829
- 80. Badano MN, Sabbione F, Keitelman I, et al. Humoral response to the BBIBP-CorV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. *medRxiv*. 2021:2021.2010.2002.21264432. https://doi.org/10.1101/2021.10.02.21264432
- 81. Ju B, Zhou B, Song S, et al. Potent antibody immunity to SARS-CoV-2 variants elicited by a third dose of inactivated vaccine. *bioRxiv*. 2021:2021.2011.2010.468037. https://doi.org/10.1101/2021.11.10.468037
- 82. Li M, Yang J, Wang L, et al. A booster dose is immunogenic and will be needed for older adults who have completed two doses vaccination with CoronaVac: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. *medRxiv*. 2021:2021.2008.2003.21261544. https://doi.org/10.1101/2021.08.03.21261544
- 83. Wang K, Cao YR, Zhou Y, et al. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. *medRxiv.* 2021:2021.2009.2002.21261735. https://doi.org/10.1101/2021.09.02.21261735
- 84. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. *medRxiv*. 2021:2021.2008.2025.21262584. https://doi.org/10.1101/2021.08.25.21262584
- 85. Iskander J, Frost JK, Russell S, et al. Effectiveness of Vaccination Against Reported SARS-CoV-2 Infection in United States Coast Guard Personnel Between May and August 2021: A Time-Series Analysis. *medRxiv*. 2021:2021.2011.2019.21266537. https://doi.org/10.1101/2021.11.19.21266537
- 86. Feikin D, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y. Duration of Effectiveness of Vaccines Against SARS-CoV-2 Infection and COVID-19 Disease: Results of a Systematic Review and Meta-Regression. SSRN. 2021. https://ssrn.com/abstract=3961378.
- 87. Poukka E, Baum U, Palmu AA, et al. Cohort study of Covid-19 vaccine effectiveness among healthcare workers in Finland, December 2020 October 2021. *medRxiv*. 2021:2021.2011.2003.21265791. https://doi.org/10.1101/2021.11.03.21265791
- 88. Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. *Science*. 2021:eabm0620. https://doi.org/10.1126/science.abm0620
- 89. Lan F-Y, Sidossis A, Iliaki E, et al. Continued Effectiveness of COVID-19 Vaccination among Urban Healthcare Workers during Delta Variant Predominance. *medRxiv*. 2021:2021.2011.2015.21265753. https://doi.org/10.1101/2021.11.15.21265753
- 90. Baden LR, ElSahly HM, Essink B, et al. Covid-19 in the Phase 3 Trial of mRNA-1273 During the Delta-variant Surge. *medRxiv*. 2021:2021.2009.2017.21263624. https://doi.org/10.1101/2021.09.17.21263624
- 91. Prunas O, Warren JL, Crawford FW, et al. Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. *medRxiv*. 2021:2021.2007.2013.21260393. https://doi.org/10.1101/2021.07.13.21260393
- 92. Riemersma KK, Grogan BE, Kita-Yarbro A, et al. Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent Wisconsin, July 2021.

- medRxiv. 2021:2021.2007.2031.21261387. https://doi.org/10.1101/2021.07.31.21261387
- 93. Harris RJ, Hall JA, Zaidi A, Andrews NJ, Dunbar JK, Dabrera G. Effect of vaccination on household transmission of sars-cov-2 in england. *New England Journal of Medicine*. 2021;385(8):759-760. https://doi.org/10.1056/NEJMc2107717
- 94. Shah ASV, Gribben C, Bishop J, et al. Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households. *medRxiv.* 2021:2021.2003.2011.21253275. https://doi.org/10.1101/2021.03.11.21253275
- 95. de Gier B, Andeweg S, Backer JA, et al. Vaccine effectiveness against SARS-CoV-2 transmission to household contacts during dominance of Delta variant (B.1.617.2), the Netherlands, August to September 2021. *Euro Surveill.* 2021;26(44). https://doi.org/10.2807/1560-7917.Es.2021.26.44.2100977
- 96. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. *Lancet*. 2021;397(10282):1351-1362. https://doi.org/10.1016/s0140-6736(21)00628-0
- 97. Kemp SA, Cheng MTK, Hamilton W, et al. Transmission of B.1.617.2 Delta Variant between vaccinated healthcare workers in Delhi, India. *medRxiv*. 2021:2021.2011.2019.21266406. https://doi.org/10.1101/2021.11.19.21266406
- 98. Bosch W, Cowart JB, Bhakta S, et al. COVID-19 Vaccine-Breakthrough Infections Requiring Hospitalization in Mayo Clinic Florida through August 2021. *Clin Infect Dis.* 2021. https://doi.org/10.1093/cid/ciab932
- 99. Mizrahi B, Lotan R, Kalkstein N, et al. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. *Nat Commun.* 2021;12(1):6379. https://doi.org/10.1038/s41467-021-26672-3
- 100. Dash GC, Subhadra S, Turuk J, et al. Breakthrough SARS-CoV-2 infections among BBV-152 (COVAXIN®) and AZD1222 (COVISHIELDTM) recipients: Report from the eastern state of India. *Journal of Medical Virology*. 2021. https://doi.org/10.1002/jmv.27382
- 101. Chau NVV, Ngoc NM, Nguyet LA, et al. An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam. EClinicalMedicine. 2021;41:101143. https://doi.org/10.1016/j.eclinm.2021.101143
- Maurya D, Kaur A, Faraz F, Tandon S, Rana A, Grover S. Assessment of breakthrough infections among post-vaccinated healthcare workers in a Tertiary Dental Hospital in New Delhi, India. *medRxiv*. 2021:2021.2011.2015.21266333. https://doi.org/10.1101/2021.11.15.21266333
- 103. Oliver SE, Gargano JW, Marin M, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine -United States, December 2020. MMWR Morbidity and mortality weekly report. 2020;69(50):1922-1924. https://doi.org/10.15585/mmwr.mm6950e2
- 104. Im JH, Kim E, Lee E, et al. Adverse Events with the Pfizer-BioNTech COVID-19 Vaccine among Korean Healthcare Workers. *Yonsei Med J.* 2021;62(12):1162-1168. https://doi.org/10.3349/ymj.2021.62.12.1162
- 105. Caminati M, Guarnieri G, Batani V, et al. Covid-19 vaccination in patients with severe asthma on biologic treatment: Safety, tolerability, and impact on disease control. *Vaccines*. 2021;9(8). https://doi.org/10.3390/vaccines9080853

- Haroun F, Alharbi M, Hong A. Case series on the safety of mRNA COVID19 vaccines in cancer patients undergoing treatment. *Journal of Clinical Oncology*. 2021;39(15 SUPPL). https://doi.org/10.1200/JCO.2021.39.15_suppl.e14562
- 107. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *New England Journal of Medicine*. 2020;384(5):403-416. https://doi.org/10.1056/NEJMoa2035389
- 108. Wei N, Fishman M, Wattenberg D, Gordon M, Lebwohl M. "COVID arm": A reaction to the Moderna vaccine. *JAAD case reports*. 2021;10:92-95. https://doi.org/10.1016/j.jdcr.2021.02.014
- 109. Voysey M, Costa Clemens SA, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *The Lancet*. 2021;397(10269):99-111. https://doi.org/10.1016/S0140-6736(20)32661-1
- 110. Ghiasi N, Valizadeh R, Arabsorkhi M, et al. Efficacy and side effects of Sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19; a review and discussion. 2021. https://doi.org/http://immunopathol.com/PDF/ipp-7-e31.pdf
- 111. Shay DK, Gee J, Su JR, et al. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine United States, March–April 2021. *Morbidity and Mortality Weekly Report*. 2021;70(18):680–684. https://doi.org/http://dx.doi.org/10.15585/mmwr.mm7018e2external
- 112. Saeed BQ, Al-Shahrabi R, Alhaj SS, Alkokhardi ZM, Adrees AO. Side Effects and Perceptions Following Sinopharm COVID-19 Vaccination. *Int J Infect Dis.* 2021. https://doi.org/10.1016/j.ijid.2021.08.013
- 113. Palacios R, Batista AP, Santos Nascimento Albuquerque C, et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN Preprint. 2021. https://doi.org/http://dx.doi.org/10.2139/ssrn.3822780
- 114. Durmaz K, Temiz SA, Zuhal K, Dursun R, Abdelmaksoud A. Allergic and Cutaneous reactions following Inactivated SARS-CoV-2 vaccine (CoronaVac®) in Healthcare workers. *Clin Exp Dermatol.* 2021. https://doi.org/10.1111/ced.14896
- Benjamanukul S, Traiyan S, Yorsaeng R, et al. Safety and immunogenicity of inactivated COVID-19 vaccine in health care workers. *J Med Virol*. 2021. https://doi.org/10.1002/jmv.27458
- 116. Ella R, Reddy S, Blackwelder W, et al. Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): a, double-blind, randomised, controlled phase 3 trial. *medRxiv*. 2021:2021.2006.2030.21259439. https://doi.org/10.1101/2021.06.30.21259439
- Kim HW, Jenista ER, Wendell DC, et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. *JAMA Cardiology*. 2021. https://doi.org/10.1001/jamacardio.2021.2828
- Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. Circulation. 2021;144(6):471-484. https://doi.org/doi:10.1161/CIRCULATIONAHA.121.056135
- Kafil T, Lamacie MM, Chenier S, et al. mRNA COVID-19 Vaccination and Development of CMR-confirmed Myopericarditis. *medRxiv*.
 2021:2021.2009.2013.21262182. https://doi.org/10.1101/2021.09.13.21262182
- 120. Cirillo N. Reported orofacial adverse effects of COVID-19 vaccines: The knowns and the unknowns. *Journal of Oral Pathology & Medicine*. 2021;50(4):424-427. https://doi.org/10.1111/jop.13165

- 121. Shimabukuro T. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine United States, December 14-23, 2020. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2021;21(3):1332-1337. https://doi.org/10.1111/ait.16516
- 122. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine*. 2020;383(27):2603-2615. https://doi.org/10.1056/NEJMoa2034577
- 123. Cohen OG, Clark AK, Milbar H, Tarlow M. Pityriasis rosea after administration of Pfizer-BioNTech COVID-19 vaccine. *Hum Vaccin Immunother*. 2021:1-2. https://doi.org/10.1080/21645515.2021.1963173
- 124. Temiz SA, Abdelmaksoud A, Dursun R, Durmaz K, Sadoughifar R, Hasan A. Pityriasis rosea following SARS-CoV-2 vaccination: A case series. *Journal of Cosmetic Dermatology*. 2021. https://doi.org/10.1111/jocd.14372
- 125. Vassallo C, Boveri E, Brazzelli V, et al. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine. *Dermatol Ther.* 2021:e15076. https://doi.org/10.1111/dth.15076
- 126. Santovito LS, Pinna G. A case of reactivation of varicella-zoster virus after BNT162b2 vaccine second dose? *Inflamm Res.* 2021:1-3. https://doi.org/10.1007/s00011-021-01491-w
- 127. Fathy RA, McMahon DE, Lee C, et al. Varicella Zoster and Herpes Simplex Virus Reactivation Post-COVID-19 Vaccination: A Review of 40 Cases in an International Dermatology Registry. *J Eur Acad Dermatol Venereol.* 2021. https://doi.org/10.1111/jdv.17646
- Papasavvas I, de Courten C, Herbort CP, Jr. Varicella-zoster virus reactivation causing herpes zoster ophthalmicus (HZO) after SARS-CoV-2 vaccination report of three cases. *J Ophthalmic Inflamm Infect*. 2021;11(1):28. https://doi.org/10.1186/s12348-021-00260-4
- 129. Soub HA, Ibrahim W, Maslamani MA, A. Ali G, Ummer W, Abu-Dayeh A. Kikuchi-Fujimoto disease following SARS CoV2 vaccination: Case report. *IDCases*. 2021;25. https://doi.org/10.1016/j.idcr.2021.e01253
- 130. Chamarti K, Dar K, Reddy A, Gundlapalli A, Mourning D, Bajaj K. Thrombotic Thrombocytopenic Purpura Presentation in an Elderly Gentleman Following COVID Vaccine Circumstances. *Cureus*. 2021;13(7):e16619. https://doi.org/10.7759/cureus.16619
- 131. Collins EC, Carr MJ, Kim JS, et al. Immune thrombocytopenia in 2 healthy young women after the Pfizer-BioNTech BNT16B2b2 messenger RNA coronavirus disease 2019 vaccination. *J Am Coll Emerg Physicians Open.* 2021;2(5):e12531. https://doi.org/10.1002/emp2.12531
- 132. Horino T. IgA nephropathy flare-up following SARS-CoV-2 vaccination. *QJM : monthly journal of the Association of Physicians*. 2021. https://doi.org/10.1093/gimed/hcab223
- 133. Hughes DL, Brunn JA, Jacobs J, Todd PK, Askari FK, Fontana RJ. Guillain-Barré syndrome after COVID-19 mRNA vaccination in a liver transplant recipient with favorable treatment response. *Liver Transpl.* 2021. https://doi.org/10.1002/lt.26279
- 134. Osowicki J, Morgan H, Harris A, Crawford NW, Buttery JP, Kiers L. Guillain-Barré Syndrome in an Australian state using both mRNA and adenovirus-vector SARS-CoV-2 vaccines. *Ann Neurol.* 2021. https://doi.org/10.1002/ana.26218

- Perna D, Jones J, Schadt CR. Acute generalized pustular psoriasis exacerbated by the COVID-19 vaccine. *JAAD Case Rep.* 2021. https://doi.org/10.1016/j.jdcr.2021.08.035
- 136. Iwata H, Kamiya K, Kado S, et al. Case of immunoglobulin A vasculitis following coronavirus disease 2019 vaccination. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16167
- 137. Mücke VT, Knop V, Mücke MM, Ochsendorf F, Zeuzem S. First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: a case report. *BMC Infect Dis.* 2021;21(1):958. https://doi.org/10.1186/s12879-021-06655-x
- 138. Elias C, Cardoso P, Gonçalves D, Vaz I, Cardoso L. Rhabdomyolysis Following Administration of Comirnaty(®). *Eur J Case Rep Intern Med.* 2021;8(8):002796. https://doi.org/10.12890/2021_002796
- 139. Franquemont S, Galvez J. Subacute Thyroiditis After mRNA Vaccine for Covid-19. *Journal of the Endocrine Society.* 2021;5(Suppl 1):A956-A957. https://doi.org/10.1210/jendso/bvab048.1954
- 140. Sato K, Mano T, Niimi Y, Toda T, Iwata A, Iwatsubo T. Facial nerve palsy following the administration of COVID-19 mRNA vaccines: analysis of a self-reporting database. *Int J Infect Dis.* 2021;111:310-312. https://doi.org/10.1016/j.ijid.2021.08.071
- 141. Buján Bonino C, Moreiras Arias N, López-Pardo Rico M, et al. Atypical erythema multiforme related to BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. *Int J Dermatol.* 2021. https://doi.org/10.1111/ijd.15894
- 142. Yoshifuji A, Ishioka K, Masuzawa Y, et al. COVID-19 vaccine induced interstitial lung disease. *J Infect Chemother*. 2021. https://doi.org/10.1016/j.jiac.2021.09.010
- 143. Valenzuela DA, Groth S, Taubenslag KJ, Gangaputra S. Acute macular neuroretinopathy following Pfizer-BioNTech COVID-19 vaccination. *Am J Ophthalmol Case Rep.* 2021;24:101200. https://doi.org/10.1016/j.ajoc.2021.101200
- 144. Coffman JR, Randolph AC, Somerson JS. Parsonage-Turner Syndrome After SARS-CoV-2 BNT162b2 Vaccine: A Case Report. JBJS Case Connect. 2021;11(3). https://doi.org/10.2106/jbjs.Cc.21.00370
- 145. Rubinstein TJ. Thyroid Eye Disease Following COVID-19 Vaccine in a Patient With a History Graves' Disease: A Case Report. *Ophthalmic Plast Reconstr Surg.* 2021. https://doi.org/10.1097/iop.00000000000000009
- 146. Yamamoto K, Mashiba T, Takano K, et al. A case of exacerbation of subclinical hyperthyroidism after first administration of bnt162b2 mrna covid-19 vaccine. *Vaccines*. 2021;9(10). https://doi.org/10.3390/vaccines9101108
- 147. Nassar M, Chung H, Dhayaparan Y, et al. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. *Diabetes & metabolic syndrome*. 2021;15(4):102170-102170. https://doi.org/10.1016/j.dsx.2021.06.007
- 148. Hong S, Fata M, Rahim M, Hanly B, Omidvari K. A RARE CASE OF INTERNAL JUGULAR VEIN THROMBOSIS AFTER MRNA COVID-19 VACCINE. *Chest.* 2021;160(4):A457-A458. https://doi.org/10.1016/j.chest.2021.07.449
- 149. Alkhalifah MI, Alsobki HE, Alwael HM, Al Fawaz AM, Al-Mezaine HS. Herpes Simplex Virus Keratitis Reactivation after SARS-CoV-2 BNT162b2 mRNA Vaccination: A Report of Two Cases. *Ocular Immunology and Inflammation*. 2021. https://doi.org/10.1080/09273948.2021.1986548
- 150. Abou-Foul AK, Ross E, Abou-Foul M, George AP. Cervical lymphadenopathy following coronavirus disease 2019 vaccine: clinical characteristics and implications

- for head and neck cancer services. *J Laryngol Otol.* 2021;135(11):1025-1030. https://doi.org/10.1017/s0022215121002462
- 151. Klomjit N, Alexander MP, Fervenza FC, et al. COVID-19 vaccination and glomerulonephritis. *Kidney Int Rep.* 2021. https://doi.org/10.1016/j.ekir.2021.09.008
- 152. Rodríguez-Martín M, Corriols-Noval P, López-Simón E, Morales-Angulo C. Ramsay Hunt syndrome following mRNA SARS-COV-2 vaccine. *Enferm Infecc Microbiol Clin (Engl Ed)*. 2021. https://doi.org/10.1016/j.eimce.2021.06.003
- 153. Baffa ME, Maglie R, Giovannozzi N, et al. Sweet syndrome following sars-cov2 vaccination. *Vaccines*. 2021;9(11). https://doi.org/10.3390/vaccines9111212
- 154. Kaulen LD, Doubrovinskaia S, Mooshage C, et al. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series. *European Journal of Neurology*. 2021. https://doi.org/10.1111/ene.15147
- Duke H, Posch L, Green L. Axillary adenopathy following COVID-19 vaccination: A single institution case series. *Clin Imaging*. 2021;80:111-116. https://doi.org/10.1016/j.clinimag.2021.05.023
- 156. Nistri R, Barbuti E, Rinaldi V, et al. Case Report: Multiple Sclerosis Relapses After Vaccination Against SARS-CoV2: A Series of Clinical Cases. *Frontiers in Neurology*. 2021;12. https://doi.org/10.3389/fneur.2021.765954
- 157. Ahmad SA, Salih BK, Hama Hussein KF, Mikael TM, Kakamad FH, Salih AM. Aseptic meningoencephalitis after COVID-19 vaccination: A case report. *Ann Med Surg* (*Lond*). 2021;71:103028. https://doi.org/10.1016/j.amsu.2021.103028
- 158. Takeyama R, Fukuda K, Kouzaki Y, et al. Intracerebral hemorrhage due to vasculitis following COVID-19 vaccination: a case report. *Acta Neurochir (Wien)*. 2021:1-5. https://doi.org/10.1007/s00701-021-05038-0
- 159. Temiz SA, Abdelmaksoud A, Wollina U, et al. Cutaneous and Allergic reactions due to COVID-19 vaccinations: A review. *Journal of Cosmetic Dermatology.* 2021. https://doi.org/10.1111/jocd.14613
- Atak MF, Farabi B, Kalelioglu MB, Rao BK. Pigmented purpuric dermatosis after BNT162B2 mRNA COVID-19 vaccine administration. *J Cosmet Dermatol.* 2021. https://doi.org/10.1111/jocd.14607
- 161. Kaplan B, Farzan S, Coscia G, et al. Allergic reactions to COVID-19 vaccines and addressing vaccine hesitancy: Northwell Health experience. *Ann Allergy Asthma Immunol.* 2021. https://doi.org/10.1016/j.anai.2021.10.019
- 162. Rechavi Y, Shashar M, Lellouche J, Yana M, Yakubovich D, Sharon N. Occurrence of BNT162b2 vaccine adverse reactions is associated with enhanced SARS-CoV-2 IgG antibody response. *Vaccines*. 2021;9(9). https://doi.org/10.3390/vaccines9090977
- 163. Iftikhar H, Noor SMU, Masood M, Bashir K. Bell's Palsy After 24 Hours of mRNA-1273 SARS-CoV-2 Vaccine. *Cureus*. 2021;13(6):e15935-e15935. https://doi.org/10.7759/cureus.15935
- 164. Thimmanagari K, Veeraballi S, Roach D, Al Omour B, Slim J. Ipsilateral Zoster Ophthalmicus Post COVID-19 Vaccine in Healthy Young Adults. *Cureus*. 2021;13(7):e16725. https://doi.org/10.7759/cureus.16725
- 165. Drerup KA, Gläser R. SARS-CoV-2—update on skin manifestations, predictive markers and cutaneous reactions after vaccination. *Hautarzt.* 2021. https://doi.org/10.1007/s00105-021-04881-7
- 166. Khan E, Shrestha AK, Colantonio MA, Liberio RN, Sriwastava S. Acute transverse myelitis following SARS-CoV-2 vaccination: a case report and review of literature. *Journal of Neurology.* 2021. https://doi.org/10.1007/s00415-021-10785-2

- 167. Christensen SK, Ballegaard M, Boesen MS. Guillian Barré syndromeafter mRNA-1273 vaccination against COVID-19. *Ugeskr Laeger*. 2021;183(35). Published 2021/09/04.
- 168. Matarneh AS, Al-Battah AH, Farooqui K, Ghamoodi M, Alhatou M. COVID-19 vaccine causing Guillain-Barre syndrome, a rare potential side effect. *Clin Case Rep.* 2021;9(9):e04756. https://doi.org/10.1002/ccr3.4756
- 169. Agaronov A, Makdesi C, Hall CS. Acute generalized exanthematous pustulosis induced by Moderna COVID-19 messenger RNA vaccine. *JAAD Case Rep.* 2021;16:96-97. https://doi.org/10.1016/j.jdcr.2021.08.013
- 170. Ajmera KM. Fatal case of rhabdomyolysis post-covid-19 vaccine. *Infection and Drug Resistance*. 2021;14:3929-3935. https://doi.org/10.2147/IDR.S331362
- 171. Mack M, Nichols L, Guerrero DM. Rhabdomyolysis Secondary to COVID-19 Vaccination. *Cureus*. 2021;13(5):e15004. https://doi.org/10.7759/cureus.15004
- 172. Ganga K, Solyar AY, Ganga R. Massive Cervical Lymphadenopathy Post-COVID-19 Vaccination. *Ear Nose Throat J.* 2021:1455613211048984. https://doi.org/10.1177/01455613211048984
- Tagini F, Carrel L, Fallet B, Gachoud D, Ribi C, Monti M. Behçet's-like adverse event or inaugural Behçet's disease after SARS-CoV-2 mRNA-1273 vaccination? *Rheumatology (Oxford, England)*. 2021. https://doi.org/10.1093/rheumatology/keab751
- 174. Català A, Muñoz-Santos C, Galván-Casas C, et al. Cutaneous reactions after SARS-COV-2 vaccination: A cross-sectional Spanish nationwide study of 405 cases. *The British journal of dermatology.* 2021. https://doi.org/10.1111/bjd.20639
- 175. Guzmán-Pérez L, Puerta-Peña M, Falkenhain-López D, et al. Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2. *Journal of the European Academy of Dermatology and Venereology*. 2021. https://doi.org/10.1111/jdv.17547
- 176. Perera R, Fletcher J. Thromboembolism and the Oxford-AstraZeneca vaccine. *BMJ*. 2021;373:n1159. https://doi.org/10.1136/bmj.n1159
- 177. Schulz JB, Berlit P, Diener HC, et al. COVID-19 vaccine-associated cerebral venous thrombosis in Germany. *Annals of neurology*. 2021. https://doi.org/10.1002/ana.26172
 178. Al Rawahi B, BaTaher H, Jaffer Z, Al-Balushi A, Al-Mazrouqi A, Al-Balushi N.
- 178. Al Rawahi B, BaTaher H, Jaffer Z, Al-Balushi A, Al-Mazrouqi A, Al-Balushi N. Vaccine-induced immune thrombotic thrombocytopenia following AstraZeneca (ChAdOx1 nCOV19) vaccine-A case report. Res Pract Thromb Haemost. 2021;5(6):e12578. https://doi.org/10.1002/rth2.12578
- 179. Asmat H, Fayeye F, Alshakaty H, Patel J. A rare case of COVID-19 vaccine-induced thrombotic thrombocytopaenia (VITT) involving the veno-splanchnic and pulmonary arterial circulation, from a UK district general hospital. *BMJ Case Rep.* 2021;14(9). https://doi.org/10.1136/bcr-2021-244223
- 180. Alalwan AA, Abou Trabeh A, Premchandran D, Razeem M. COVID-19 Vaccine-Induced Thrombotic Thrombocytopenia: A Case Series. *Cureus*. 2021;13(9):e17862. https://doi.org/10.7759/cureus.17862
- 181. Wolthers SA, Stenberg J, Nielsen HB, Stensballe J, Pedersen HP. Intracerebral haemorrhage twelve days after vaccination with ChAdOx1 nCoV-19. *Ugeskr Laeger*. 2021;183(35). Published 2021/09/04.
- 182. Fang WC, Chiu LW, Hu SC. Psoriasis exacerbation after first dose of AstraZeneca coronavirus disease 2019 vaccine. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16137

- 183. Corrêa DG, Cañete LAQ, dos Santos GAC, de Oliveira RV, Brandão CO, da Cruz LCH. Neurological symptoms and neuroimaging alterations related with COVID-19 vaccine: Cause or coincidence? *Clinical Imaging*. 2021;80:348-352. https://doi.org/10.1016/j.clinimag.2021.08.021
- Oh HK, Kim EK, Hwang I, et al. COVID-19 vaccine safety monitoring in the Republic of Korea: February 26, 2021 to April 30, 2021. *Osong Public Health Res Perspect*. 2021;12(4):264-268. https://doi.org/10.24171/j.phrp.2021.0157
- 185. Mohta A, Arora A, Srinivasa R, Mehta RD. Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria being treated with cyclosporine—A report of 3 cases. *Journal of Cosmetic Dermatology.* 2021. https://doi.org/10.1111/jocd.14437
- 186. Wantavornprasert K, Noppakun N, Klaewsongkram J, Rerknimitr P. Generalized Bullous Fixed Drug Eruption after ChAdOx1 nCoV-19 Vaccination. *Clin Exp Dermatol.* 2021. https://doi.org/10.1111/ced.14926
- 187. Oo WM, Giri P, de Souza A. AstraZeneca COVID-19 vaccine and Guillain-Barré Syndrome in Tasmania: A causal link? *J Neuroimmunol.* 2021;360:577719. https://doi.org/10.1016/j.jneuroim.2021.577719
- 188. Pedrazini MC, da Silva MH. "Pityriasis Rosea-like cutaneous eruption as a possible dermatological manifestation after Oxford-AstraZeneca vaccine: case report and brief literature review.". *Dermatol Ther.* 2021:e15129. https://doi.org/10.1111/dth.15129
- 189. Leerunyakul K, Pakornphadungsit K, Suchonwanit P. Case Report: Pityriasis Rosea-Like Eruption Following COVID-19 Vaccination. *Front Med (Lausanne)*. 2021;8:752443. https://doi.org/10.3389/fmed.2021.752443
- 190. Wu RW, Lin TK. Oxford-AstraZeneca COVID-19 vaccine-induced acute localized exanthematous pustulosis. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16138
- Elbæk MV, Vinding GR, Jemec GBE. Darier's Disease Flare following COVID-19 Vaccine. Case Rep Dermatol. 2021;13(2):432-436. https://doi.org/10.1159/000517256
- 192. Tan A, Stepien KM, Narayana STK. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. *Qjm.* 2021. https://doi.org/10.1093/gjmed/hcab077
- 193. Sriphrapradang C, Shantavasinkul PC. Graves' disease following SARS-CoV-2 vaccination. *Endocrine*. 2021. https://doi.org/10.1007/s12020-021-02902-y
- 194. Nasuelli NA, De Marchi F, Cecchin M, et al. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine. *Neurol Sci.* 2021;42(11):4747-4749. https://doi.org/10.1007/s10072-021-05467-w
- 195. Mehta H, Handa S, Malhotra P, et al. Erythema nodosum, zoster duplex and pityriasis rosea as possible cutaneous adverse effects of Oxford-AstraZeneca COVID-19 vaccine: report of three cases from India. *J Eur Acad Dermatol Venereol.* 2021. https://doi.org/10.1111/jdv.17678
- 196. Chan JEZ, Irimpen A. Severe but self-limiting polyarthralgia with functional impairment following chadox1 ncov-19 vaccination in an elderly recipient. *Vaccines*. 2021;9(11). https://doi.org/10.3390/vaccines9111220
- 197. Panou E, Nikolaou V, Marinos L, et al. Recurrence of cutaneous T-cell lymphoma post viral vector COVID-19 vaccination. *J Eur Acad Dermatol Venereol.* 2021. https://doi.org/10.1111/jdv.17736

- 198. Jeong J, Choi HS. Sudden sensorineural hearing loss after COVID-19 vaccination. International Journal of Infectious Diseases. 2021;113:341-343. https://doi.org/10.1016/j.ijid.2021.10.025
- 199. Loo LK, Salim O, Liang D, et al. Acute-onset polyradiculoneuropathy after SARS-CoV2 vaccine in the West and North Midlands, United Kingdom. *Muscle Nerve*. 2021. https://doi.org/10.1002/mus.27461
- U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: July 13, 2021.
 U.S Food & Drug Administration. Published 2021. Updated 13 July 2021. Accessed 18 August, 2021.
- 201. Kemper M, Berssenbrügge C, Lenz G, Mesters RM. Vaccine-induced pseudothrombocytopenia after Ad26.COV2.S vaccination. *Annals of Hematology*. 2021. https://doi.org/10.1007/s00277-021-04611-y
- 202. Akuna M, Qureshi M, Miller N. VITT reaction associated with Johnson & Johnson vaccine. *Chest.* 2021;160(4):A811. https://doi.org/10.1016/j.chest.2021.07.764
- 203. Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. *JAMA*. 2021;326(1):35-45. https://doi.org/10.1001/jama.2021.8565
- 204. Huang L, Yao Z, Zhang J. Two cases of pityriasis rosea after the injection of coronavirus disease 2019 vaccine. J Eur Acad Dermatol Venereol. 2021. https://doi.org/10.1111/jdv.17648
- 205. Pan L, Zhang Y, Cui Y, Wu X. Bilateral uveitis after inoculation with COVID-19 vaccine: A case report. *Int J Infect Dis.* 2021. https://doi.org/10.1016/j.ijid.2021.09.075
- 206. Tutar NK, EyigÜRbÜZ T, Yildirim Z, Kale N. A variant of guillain-barre syndrome after sars-cov-2 vaccination: Amsan. *Ideggyogyaszati Szemle*. 2021;74(7-8):286-288. https://doi.org/10.18071/ISZ.74.0286
- 207. Saygılı ES, Karakilic E. Subacute thyroiditis after inactive SARS-CoV-2 vaccine. *BMJ Case Rep.* 2021;14(10). https://doi.org/10.1136/bcr-2021-244711
- 208. Zhang LW, Wang WJ, Li CH, Chen T. Erythema multiforme after SARS-CoV-2 vaccine. *J Eur Acad Dermatol Venereol*, 2021, https://doi.org/10.1111/jdv.17689
- 209. Noikongdee P, Police P, Phojanasenee T, et al. Prevalence of anti-platelet factor 4/polyanionic antibodies after COVID-19 vaccination with ChAdOx1 nCoV-19 and CoronaVac in Thais. Res Pract Thromb Haemost. 2021;5(7):e12600. https://doi.org/10.1002/rth2.12600
- Chaijaras S, Seree-Aphinan C, Rutnin S, Ngamjanyaporn P, Rattanakaemakorn P. Serum sickness-like reaction following an administration of the first dose of inactivated COVID19 vaccine: a case report. *JAAD Case Rep.* 2021. https://doi.org/10.1016/j.jdcr.2021.11.004
- 211. Shimazawa R, Ikeda M. Potential adverse events in Japanese women who received tozinameran (BNT162b2, Pfizer-BioNTech). *Journal of Pharmaceutical Policy and Practice*. 2021;14(1):46. https://doi.org/10.1186/s40545-021-00326-7
- 212. Saito K, Shimizu T, Suzuki-Inoue K, Ishida T, Wada Y. Aseptic meningitis after vaccination of the BNT162b2 mRNA COVID-19 vaccine. *Neurol Sci.* 2021:1-3. https://doi.org/10.1007/s10072-021-05543-1
- 213. Bril F, Fettig DM. Reply to: "Comment on "Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty?"". *Journal of Hepatology*. 2021. https://doi.org/10.1016/j.jhep.2021.06.008
- 214. Palla P, Vergadis C, Sakellariou S, Androutsakos T. Letter to the editor: Autoimmune hepatitis after COVID-19 vaccination. A rare adverse effect? *Hepatology*. 2021. https://doi.org/10.1002/hep.32156

- Maniscalco GT, Manzo V, Di Battista ME, et al. Severe Multiple Sclerosis Relapse After COVID-19 Vaccination: A Case Report. Front Neurol. 2021;12:721502. https://doi.org/10.3389/fneur.2021.721502
- 216. Takenaka T, Matsuzaki M, Fujiwara S, Hayashida M, Suyama H, Kawamoto M. Myeloperoxidase Anti-neutrophil Cytoplasmic Antibody Positive Optic Perineuritis after mRNA Coronavirus Disease-19 Vaccine: A Case Report. *Qjm.* 2021. https://doi.org/10.1093/gjmed/hcab227
- 217. Endo B, Bahamon S, Martínez-Pulgarín DF. Central retinal vein occlusion after mRNA SARS-CoV-2 vaccination: A case report. *Indian J Ophthalmol.* 2021;69(10):2865-2866. https://doi.org/10.4103/ijo.IJO_1477_21
- 218. Vinzamuri S, Pradeep TG, Kotian R. Bilateral paracentral acute middle maculopathy and acute macular neuroretinopathy following COVID-19 vaccination. *Indian J Ophthalmol.* 2021;69(10):2862-2864. https://doi.org/10.4103/ijo.IJO 1333 21
- 219. Elboraey MO, Essa E. Stevens-Johnson syndrome post second dose of Pfizer COVID-19 vaccine: a case report. *Oral Surg Oral Med Oral Pathol Oral Radiol.* 2021;132(4):e139-e142. https://doi.org/10.1016/j.oooo.2021.06.019
- 220. Bakir M, Almeshal H, Alturki R, Obaid S, Almazroo A. Toxic Epidermal Necrolysis Post COVID-19 Vaccination First Reported Case. *Cureus*. 2021;13(8):e17215. https://doi.org/10.7759/cureus.17215
- Onn PY, Chang CL. Lichenoid cutaneous skin eruption and associated systemic inflammatory response following Pfizer-BioNTech mRNA COVID-19 vaccine administration. Respirol Case Rep. 2021;9(11):e0860. https://doi.org/10.1002/rcr2.860
- 222. Yesilkaya UH, Sen M, Tasdemir BG. A novel adverse effect of the BNT162b2 mRNA vaccine: First episode of acute mania with psychotic features. *Brain Behav Immun Health*. 2021;18:100363. https://doi.org/10.1016/j.bbih.2021.100363
- 223. Flannery P, Yang I, Keyvani M, Sakoulas G. Acute Psychosis Due to Anti-N-Methyl D-Aspartate Receptor Encephalitis Following COVID-19 Vaccination: A Case Report. *Frontiers in Neurology.* 2021;12. https://doi.org/10.3389/fneur.2021.764197
- 224. Rossi A, Magri F, Michelini S, et al. Recurrence of alopecia areata after covid-19 vaccination: A report of three cases in Italy. *Journal of Cosmetic Dermatology*. 2021. https://doi.org/10.1111/jocd.14581
- 225. Walter A, Kraemer M. A neurologist's rhombencephalitis after comirnaty vaccination. A change of perspective. *Neurological Research and Practice*. 2021;3(1). https://doi.org/10.1186/s42466-021-00156-7
- 226. Kahn B, Apostolidis SA, Bhatt V, et al. Multisystem Inflammation and Organ Dysfunction After BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccination. *Crit Care Explor.* 2021;3(11):e0578. https://doi.org/10.1097/cce.000000000000578
- 227. Cecchi N, Giannotta JA, Barcellini W, Fattizzo B. A case of severe aplastic anaemia after SARS-CoV-2 vaccination. *British Journal of Haematology*. 2021. https://doi.org/10.1111/bih.17947
- 228. Dell'Antonia M, Anedda S, Usai F, Atzori L, Ferreli C. Bullous pemphigoid triggered by COVID-19 vaccine. Rapid resolution with corticosteroid therapy. *Dermatol Ther.* 2021:e15208. https://doi.org/10.1111/dth.15208
- 229. Hanna J, Ingram A, Shao T. Minimal Change Disease After First Dose of Pfizer-BioNTech COVID-19 Vaccine: A Case Report and Review of Minimal Change Disease Related to COVID-19 Vaccine. *Canadian Journal of Kidney Health and Disease*. 2021;8. https://doi.org/10.1177/20543581211058271

- Nishiguchi Y, Matsuyama H, Maeda K, Shindo A, Tomimoto H. Miller Fisher syndrome following BNT162b2 mRNA coronavirus 2019 vaccination. BMC Neurology. 2021;21(1). https://doi.org/10.1186/s12883-021-02489-x
- 231. Pawlowski C, Rincón-Hekking J, Awasthi S, et al. Cerebral Venous Sinus Thrombosis is not Significantly Linked to COVID-19 Vaccines or Non-COVID Vaccines in a Large Multi-State Health System. *Journal of Stroke and Cerebrovascular Diseases*. 2021;30(10). https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105923
- 232. Sung JG, Sobieszczyk PS, Bhatt DL. Acute Myocardial Infarction Within 24 Hours After COVID-19 Vaccination. *Am J Cardiol.* 2021;156:129-131. https://doi.org/10.1016/j.amjcard.2021.06.047
- 233. Murvelashvili N, Tessnow A. A Case of Hypophysitis Following Immunization With the mRNA-1273 SARS-CoV-2 Vaccine. *Journal of Investigative Medicine High Impact Case Reports*. 2021;9. https://doi.org/10.1177/23247096211043386
- 234. Herrera M, West K, Holstein H. ERYTHEMA NODOSUM-LIKE RASH AFTER SARS-COV-2 VACCINATION: A CASE REPORT. *Chest.* 2021;160(4):A1380. https://doi.org/10.1016/j.chest.2021.07.1261
- 235. Saxby K, Kingsborough B, Young D, Capone D. MODERNA VACCINE PULMONARY EMBOLISM: ASSOCIATION VS COINCIDENCE. *CHEST*. 2021;160(4):A54. https://doi.org/10.1016/j.chest.2021.07.086
- 236. Thappy S, Thalappil SR, Abbarh S, Al-Mashdali A, Akhtar M, Alkadi MM. Minimal change disease following the Moderna COVID-19 vaccine: first case report. *BMC Nephrol.* 2021;22(1):376. https://doi.org/10.1186/s12882-021-02583-9
- 237. Finsterer J. Before attributing encephalomyelitis to SARS-CoV-2 vaccinations thoroughly exclude differentials. *Annals of Clinical and Translational Neurology*. 2021. https://doi.org/10.1002/acn3.51469
- 238. Sekar A. Lupus nephritis flare post Moderna mRNA-1273 coronavirus vaccine. *Qjm.* 2021. https://doi.org/10.1093/qjmed/hcab284
- 239. Abramson M, Mon-Wei Yu S, Campbell KN, Chung M, Salem F. IgA Nephropathy After SARS-CoV-2 Vaccination. *Kidney Medicine*. 2021. https://doi.org/10.1016/j.xkme.2021.05.002
- 240. Londoño MC, Gratacós-Ginès J, Sáez-Peñataro J. Another case of autoimmune hepatitis after SARS-CoV-2 vaccination still casualty? *Journal of Hepatology*. 2021;75(5):1248-1249. https://doi.org/10.1016/j.jhep.2021.06.004
- 241. Bril F. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: One or even several swallows do not make a summer. *Journal of Hepatology*. 2021;75(5):1256-1257. https://doi.org/10.1016/j.jhep.2021.08.001
- 242. Edwards AE, Vathenen R, Henson SM, Finer S, Gunganah K. Acute hyperglycaemic crisis after vaccination against COVID-19: A case series. *Diabet Med.* 2021:e14631. https://doi.org/10.1111/dme.14631
- 243. Essam R, Ehab R, Al-Razzaz R, Khater MW, Moustafa EA. Alopecia areata after ChAdOx1 nCoV-19 vaccine (Oxford/AstraZeneca): a potential triggering factor? *J Cosmet Dermatol.* 2021. https://doi.org/10.1111/jocd.14459
- 244. Crane P, Wong C, Mehta N, Barlis P. Takotsubo (stress) cardiomyopathy after ChAdOx1 nCoV-19 vaccination. BMJ Case Rep. 2021;14(10). https://doi.org/10.1136/bcr-2021-246580
- 245. Rinaldi V, Bellucci G, Sforza M, et al. Suspected acute disseminated encephalomyelitis (ADEM) after ChAdOx1 nCoV-19 vaccine: A case report. *Journal of the neurological sciences official journal of the World Federation of Neurology*. 2021;429:119796.

- 246. Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and Intracranial Venous Sinus Thrombosis after "COVID-19 Vaccine AstraZeneca" Exposure. *Journal of Clinical Medicine*. 2021;10(8):1599. https://www.mdpi.com/2077-0383/10/8/1599.
- 247. Bayas A, Menacher M, Christ M, Behrens L, Rank A, Naumann M. Bilateral superior ophthalmic vein thrombosis, ischaemic stroke, and immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination. *The Lancet*. 2021;397(10285):e11. https://doi.org/10.1016/S0140-6736(21)00872-2
- 248. Jain E, Pandav K, Regmi P, Michel G, Altshuler I. Facial Diplegia: A Rare, Atypical Variant of Guillain-Barré Syndrome and Ad26.COV2.S Vaccine. *Cureus*. 2021;13(7):e16612. https://doi.org/10.7759/cureus.16612
- 249. Patel SN, Yonekawa Y. Acute macular neuroretinopathy following SARS-CoV-2 vaccination. *Retinal cases & brief reports*. 2021. https://doi.org/10.1097/ICB.000000000001195
- 250. MacNeil JR, Su JR, Broder KR, et al. Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome Among Vaccine Recipients United States, April 2021. MMWR Morbidity and mortality weekly report. 2021;70(17):651-656. https://doi.org/10.15585/mmwr.mm7017e4
- 251. Troeltzsch M, Berndt R, Troeltzsch M. Comment on "Oral lichen planus following the administration of vector based COVID-19 vaccine (Ad26.COV2.S)". Authors' reply. *Oral Diseases.*n/a(n/a). https://doi.org/https://doi.org/10.1111/odi.14060
- 252. Tunjungputri RN, Tetrasiwi EN, Veronica M, Pandelaki J, Ibrahim F, Nelwan EJ. Vaccine-associated disease enhancement: a case report of post-vaccination COVID-19. *International Journal of Antimicrobial Agents*. 2021;58. https://doi.org/10.1016/j.ijantimicag.2021.106421.86
- 253. Lane S, Shakir S. Reports of myocarditis and pericarditis following mRNA COVID-19 vaccines: A review of spontaneously reported data from the UK, Europe, and the US. *medRxiv*. 2021:2021.2009.2009.21263342. https://doi.org/10.1101/2021.09.09.21263342
- Witberg G, Barda N, Hoss S, et al. Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2110737
- 255. Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2109730
- 256. Simone A, Herald J, Chen A, et al. Acute Myocarditis Following COVID-19 mRNA Vaccination in Adults Aged 18 Years or Older. *JAMA Internal Medicine*. 2021. https://doi.org/10.1001/jamainternmed.2021.5511
- 257. Levin D, Shimon G, Fadlon-Derai M, et al. Myocarditis following COVID-19 vaccination A case series. *Vaccine*. 2021. https://doi.org/10.1016/j.vaccine.2021.09.004
- 258. Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. *New England Journal of Medicine*. 2021;385(3):239-250. https://doi.org/10.1056/NEJMoa2107456
- 259. Walter EB, Talaat KR, Sabharwal C, et al. Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2116298

- 260. Study to Evaluate the Safety, Tolerability, and Immunogenicity of an RNA Vaccine Candidate Against COVID-19 in Healthy Children <12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04816643;
- 261. Ali K, Berman G, Zhou H, et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. *N Engl J Med.* 2021. https://doi.org/10.1056/NEJMoa2109522
- 262. A Study to Evaluate Safety and Effectiveness of mRNA-1273 COVID-19 Vaccine in Healthy Children Between 6 Months of Age and Less Than 12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04796896;
- 263. Ewen Callaway. COVID vaccines and kids: five questions as trials begin. https://www.nature.com/articles/d41586-021-01061-4. Published 2021. Accessed August 11, 2021, 2021.
- 264. Han B, Song Y, Li C, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. *The Lancet Infectious Diseases*. 2021. https://doi.org/10.1016/S1473-3099(21)00319-4
- 265. Novavax Initiates Pediatric Expansion for Phase 3 Clinical Trial of COVID-19 Vaccine [press release]. May 3, 2021 2021. https://ir.novavax.com/2021-05-03-Novavax-Initiates-Pediatric-Expansion-for-Phase-3-Clinical-Trial-of-COVID-19-Vaccine.
- 266. Moderna Announces Positive Top Line Data from Phase 2/3 Study of COVID-19 Vaccine in Children 6 to 11 Years of Age [press release]. 25 October 2021 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-top-line-data-phase-23-study-covid-19.
- 267. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. *Lancet Infect Dis.* 2021. https://doi.org/10.1016/s1473-3099(21)00462-x
- 268. COVAXIN in a Pediatric Cohort. In: https://ClinicalTrials.gov/show/NCT04918797;
- 269. A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥ 18 Years With a Pediatric Expansion in Adolescents (12 to < 18 Years) at Risk for SARS-CoV-2. In. ClinicalTrials.gov2021.

 https://clinicaltrials.gov/ct2/show/NCT04611802?id=NCT04917523+OR+NCT05003466+OR+NCT05003479+OR+NCT04998240+OR+NCT04611802&draw=2&rank=5&load=cart.
- 270. Glatman-Freedman A, Hershkovitz Y, Kaufman Z, Dichtiar R, Keinan-Boker L, Bromberg M. Effectiveness of BNT162b2 Vaccine in Adolescents during Outbreak of SARS-CoV-2 Delta Variant Infection, Israel, 2021. *Emerging Infectious Diseases*. 2021;27(11):2919-2922. https://doi.org/10.3201/eid2711.211886.
- 271. Tartof; SY, Slezak; JM, Fischer; H, et al. Six-Month Effectiveness of BNT162B2 mRNA COVID-19 Vaccine in a Large US Integrated Health System: A Retrospective Cohort Study. SSRN Preprint. 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3909743.
- 272. Olson S, Newhams MM, Halasa NB, et al. Effectiveness of Pfizer-BioNTech mRNA Vaccination Against COVID-19 Hospitalization Among Persons Aged 12–18 Years Morbidity & Mortality Weekly Report. 2021;70. https://doi.org/10.15585/mmwr.mm7042e1
- 273. Chai Q, Nygaard U, Schmidt RC, Zaremba T, Møller AM, Thorvig CM. Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. *Acta Paediatr.* 2021. https://doi.org/10.1111/apa.16141

- 274. Nakazawa E, Uchimura T, Hirai Y, et al. New-onset pediatric nephrotic syndrome following Pfizer-BioNTech SARS-CoV-2 vaccination: a case report and literature review. *CEN Case Reports*. 2021. https://doi.org/10.1007/s13730-021-00656-0
- 275. Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? *Children*. 2021;8(7). https://doi.org/10.3390/children8070607
- 276. University of Oxford. Comparing COVID-19 Vaccine Schedule Combinations. https://comcovstudy.org.uk/about-com-cov2. Published 2021. Accessed September 2, 2021.
- 277. Liu X, Shaw RH, Stuart ASV, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. *Lancet.* 2021. https://doi.org/10.1016/S0140-6736(21)01694-9
- 278. Schmidt T, Klemis V, Schub D, et al. Immunogenicity and reactogenicity of a heterologous COVID-19 prime-boost vaccination compared with homologous vaccine regimens. *medRxiv*. 2021:2021.2006.2013.21258859. https://doi.org/10.1101/2021.06.13.21258859
- 279. Borobia AM, Carcas AJ, Pérez-Olmeda M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. *The Lancet.* 2021;398(10295):121-130. https://doi.org/10.1016/S0140-6736(21)01420-3
- 280. Pozzetto B, Legros V, Djebali S, et al. Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination. *Nature*. 2021. https://doi.org/10.1038/s41586-021-04120-v
- 281. Yorsaeng R, Vichaiwattana P, Klinfueng S, et al. Immune response elicited from heterologous SARS-CoV-2 vaccination: Sinovac (CoronaVac) followed by AstraZeneca (Vaxzevria). *medRxiv*. 2021:2021.2009.2001.21262955. https://doi.org/10.1101/2021.09.01.21262955
- 282. Li J, Hou L, Guo X, et al. Heterologous prime-boost immunization with CoronaVac and Convidecia. *medRxiv*. 2021:2021.2009.2003.21263062. https://doi.org/10.1101/2021.09.03.21263062
- 283. Kant R, Dwivedi G, Zaman K, et al. Immunogenicity and safety of a heterologous prime-boost COVID-19 vaccine schedule: ChAdOx1 vaccine Covishield followed by BBV152 Covaxin. *Journal of Travel Medicine*. 2021. https://doi.org/10.1093/jtm/taab166
- 284. Safety and Efficacy of COVID-19 Prime-boost Vaccine in Bahrain. In: https://ClinicalTrials.gov/show/NCT04993560;
- 285. Moderna Announces Positive Initial Booster Data Against SARS-CoV-2 Variants of Concern [press release]. Cambridge, Massachusetts, May 5 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov.
- 286. Flaxman A, Marchevsky NG, Jenkin D, et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). *Lancet.* 2021. https://doi.org/10.1016/s0140-6736(21)01699-8
- 287. Novavax Announces COVID-19 Vaccine Booster Data Demonstrating Four-Fold Increase in Neutralizing Antibody Levels Versus Peak Responses After Primary Vaccination [press release]. Novavax, August 5, 2021 2021. https://ir.novavax.com/2021-08-05-Novavax-Announces-COVID-19-Vaccine-Booster-

- <u>Data-Demonstrating-Four-Fold-Increase-in-Neutralizing-Antibody-Levels-Versus-Peak-Responses-After-Primary-Vaccination.</u>
- 288. PFIZER AND BIONTECH ANNOUNCE PHASE 3 TRIAL DATA SHOWING HIGH EFFICACY OF A BOOSTER DOSE OF THEIR COVID-19 VACCINE [press release]. 21 October 2021 2021. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-phase-3-trial-data-showing.
- 289. Efficacy & Safety of BNT162b2 booster C4591031 2 month interim analysis [press release]. Pfizer and BioNTech, CDC, 19 November 2021.

 https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-11-19/02-COVID-Perez-508.pdf.
- 290. PFIZER AND BIONTECH ANNOUNCE SUBMISSION OF INITIAL DATA TO U.S. FDA TO SUPPORT BOOSTER DOSE OF COVID-19 VACCINE [press release]. NEW YORK & MAINZ, Germany2021. https://www.pfizer.com/news/press-release-detail/pfizer-and-biontech-announce-submission-initial-data-us-fda.
- 291. Eliakim-Raz N, Leibovici-Weisman Y, Stemmer A, et al. Antibody Titers Before and After a Third Dose of the SARS-CoV-2 BNT162b2 Vaccine in Adults Aged ≥60 Years. Jama. 2021. https://doi.org/10.1001/jama.2021.19885
- 292. Wu K, Choi A, Koch M, et al. Preliminary Analysis of Safety and Immunogenicity of a SARS-CoV-2 Variant Vaccine Booster. *medRxiv*. 2021:2021.2005.2005.21256716. https://doi.org/10.1101/2021.05.05.21256716
- 293. Bar-On YM, Goldberg Y, Mandel M, et al. Protection Across Age Groups of BNT162b2 Vaccine Booster against Covid-19. *medRxiv*. 2021:2021.2010.2007.21264626. https://doi.org/10.1101/2021.10.07.21264626
- 294. Bar-On YM, Goldberg Y, Mandel M, et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2114255
- 295. Patalon T, Gazit S, Pitzer VE, Prunas O, Warren JL, Weinberger DM. Short Term Reduction in the Odds of Testing Positive for SARS-CoV-2; a Comparison Between Two Doses and Three doses of the BNT162b2 Vaccine. *medRxiv*. 2021;2021,2008,2029,21262792, https://doi.org/10.1101/2021.08.29.21262792
- 296. Andrews N, Stowe J, Kirsebom F, Gower C, Ramsay M, Lopez Bernal J. Effectiveness of BNT162b2 (Comirnaty, Pfizer-BioNTech) COVID-19 booster vaccine against covid-19 related symptoms in England: test negative case-control study. *medRxiv.* 2021:2021.2011.2015.21266341. https://doi.org/10.1101/2021.11.15.21266341
- 297. Iketani S, Liu L, Nair MS, et al. A third COVID-19 vaccine shot markedly boosts neutralizing antibody potency and breadth. *medRxiv*. 2021:2021.2008.2011.21261670. https://doi.org/10.1101/2021.08.11.21261670
- 298. Atmar RL, Lyke KE, Deming ME, et al. Heterologous SARS-CoV-2 Booster Vaccinations Preliminary Report. *medRxiv*. 2021:2021.2010.2010.21264827. https://doi.org/10.1101/2021.10.10.21264827
- 299. Yorsaeng R, Suntronwong N, Phowatthanasathian H, et al. Immunogenicity of a third dose viral-vectored COVID-19 vaccine after receiving two-dose inactivated vaccines in healthy adults. *medRxiv*. 2021:2021.2009.2016.21263692. https://doi.org/10.1101/2021.09.16.21263692
- 300. Keskin AU, Bolukcu S, Ciragil P, Topkaya AE. SARS-CoV-2 specific antibody responses after third CoronaVac or BNT162b2 vaccine following two-dose CoronaVac vaccine regimen. *J Med Virol.* 2021. https://doi.org/10.1002/jmv.27350

- Walsh EE, Frenck RW, Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine.
 2020;383(25):2439-2450. https://doi.org/10.1056/NEJMoa2027906
- 302. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. *New England Journal of Medicine*. 2020.
- 303. Anderson EJ, Rouphael NG, Widge AT, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. *New England Journal of Medicine*. 2020;383(25):2427-2438. https://doi.org/10.1056/NEJMoa2028436
- 304. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. *The Lancet*. 2020;396(10267):1979-1993. https://doi.org/10.1016/S0140-6736(20)32466-1
- 305. Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1–2a trial of Ad26. COV2. S Covid-19 vaccine. *New England Journal of Medicine*. 2021;384(19):1824-1835.
- 306. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. *The Lancet Infectious Diseases*. 2021;21(1):39-51. https://doi.org/10.1016/S1473-3099(20)30831-8
- 307. Karamese M, Tutuncu EE. The effectiveness of inactivated SARS-CoV-2 vaccine (CoronaVac) on antibody response in participants aged 65 years and older. *Journal of Medical Virology*. 2021. https://doi.org/10.1002/jmv.27289
- 308. Angkasekwinai N, Sewatanon J, Niyomnaitham S, et al. Safety and Immunogenicity of CoronaVac and ChAdOx1 Against the SARS-CoV-2 Circulating Variants of Concern (Alpha, Delta, Beta) in Thai Healthcare Workers. *medRxiv*. 2021:2021.2010.2003.21264451. https://doi.org/10.1101/2021.10.03.21264451
- 309. Singh AK, Phatak SR, Singh NK, et al. Antibody Response after First-dose of ChAdOx1-nCOV (Covishield™[®]) and BBV-152 (Covaxin™[®]) amongst Health Care Workers in India: Preliminary Results of Cross-sectional Coronavirus Vaccine-induced Antibody Titre (COVAT) study. *medRxiv*. 2021:2021.2004.2007.21255078. https://doi.org/10.1101/2021.04.07.21255078
- 310. Tada T, Zhou H, Dcosta BM, et al. Neutralization of Mu and C.1.2 SARS-CoV-2 Variants by Vaccine-elicited Antibodies in Individuals With and Without Previous History of Infection. *bioRxiv*. 2021:2021.2010.2019.463727. https://doi.org/10.1101/2021.10.19.463727
- 311. Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel 33 U.S. Sites, January–March 2021. MMWR Morbidity and mortality weekly report. 2021;70(20):753–758. https://doi.org/http://dx.doi.org/10.15585/mmwr.mm7020e2external
- 312. Vasileiou E, Simpson CR, Shi T, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. *The Lancet*. 2021;397(10285):1646-1657. https://doi.org/10.1016/S0140-6736(21)00677-2
- 313. Prendecki M, Willicombe M. Single-dose SARS-CoV-2 vaccination efficacy in the elderly. *The Lancet Infectious Diseases*. 2021;21(11):1474-1475. https://doi.org/10.1016/S1473-3099(21)00354-6

- 314. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. *The Lancet*. 2021;397(10277):881-891. https://doi.org/10.1016/S0140-6736(21)00432-3
- 315. Hitchings MDT, Ranzani OT, Scaramuzzini Torres MS, et al. Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: A test-negative case-control study. *medRxiv*. 2021:2021.2004.2007.21255081. https://doi.org/10.1101/2021.04.07.21255081
- 316. El Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2113017
- 317. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. *New England Journal of Medicine*. 2021;384(20):1885-1898. https://doi.org/10.1056/NEJMoa2102214
- 318. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. *N Engl J Med.* 2021;384(23):2187-2201. https://doi.org/10.1056/NEJMoa2101544
- 319. Vacharathit V, Aiewsakun P, Manopwisedjaroen S, et al. SARS-CoV-2 variants of concern exhibit reduced sensitivity to live-virus neutralization in sera from CoronaVac vaccinees and naturally infected COVID-19 patients. *medRxiv*. 2021:2021.2007.2010.21260232. https://doi.org/10.1101/2021.07.10.21260232
- 320. Ella R, Reddy S, Blackwelder W, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. *Lancet.* 2021. https://doi.org/10.1016/s0140-6736(21)02000-6
- 321. Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. *medRxiv*. 2021:2021.2010.2005.21264567. https://doi.org/10.1101/2021.10.05.21264567
- 322. Sacks HS. The Novavax vaccine had 90% efficacy against COVID-19 ≥7 d after the second dose. *Ann Intern Med.* 2021. https://doi.org/10.7326/acpj202111160-124
- 323. Thompson MG, Burgess JL, Naleway AL, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers Eight U.S. Locations, December 2020–March 2021. MMWR Morbidity and mortality weekly report. 2021;70(13):495-500. https://doi.org/10.15585/mmwr.mm7013e3external
- 324. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. *Nat Commun.* 2021;12(1):3991. https://doi.org/10.1038/s41467-021-24285-4
- 325. Moderna. Moderna COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa. 2021. https://investors.modernatx.com/node/10841/pdf.
- 326. Jeewandara C, Aberathna IS, Pushpakumara PD, et al. Antibody and T cell responses to Sinopharm/BBIBP-CorV in naïve and previously infected individuals in Sri Lanka. *medRxiv*. 2021:2021.2007.2015.21260621. https://doi.org/10.1101/2021.07.15.21260621

- 327. Fernández J. Bruneau N. Fasce R. et al. Neutralization of alpha, gamma, and D614G SARS-CoV-2 variants by CoronaVac vaccine-induced antibodies. Journal of Medical Virology. 2021. https://doi.org/10.1002/jmv.27310
- Sapkal GN, Yadav PD, Ella R, et al. Inactivated COVID-19 vaccine 328. BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. Journal of Travel Medicine. 2021;28(4). https://doi.org/10.1093/jtm/taab051
- Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced 329. antibody responses against three SARS-CoV-2 variants. Nature Communications. 2021;12(1). https://doi.org/10.1038/s41467-021-24285-4
- 330. Thomas SJ, Moreira ED, Kitchin N, et al. Six Month Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. medRxiv. 2021;2021;2007.2028,21261159. https://doi.org/10.1101/2021.07.28.21261159
- Jongeneelen M, Kaszas K, Veldman D, et al. Ad26.COV2.S elicited neutralizing 331. activity against Delta and other SARS-CoV-2 variants of concern. bioRxiv. 2021:2021.2007.2001.450707. https://doi.org/10.1101/2021.07.01.450707
- 332. Tada T, Zhou H, Samanovic MI, et al. Comparison of Neutralizing Antibody Titers Elicited by mRNA and Adenoviral Vector Vaccine against SARS-CoV-2 Variants. bioRxiv. 2021:2021.2007.2019.452771. https://doi.org/10.1101/2021.07.19.452771
- Yadav PD, Sapkal GN, Ella R, et al. Neutralization of Beta and Delta variant with sera 333. of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. Journal of travel medicine. 2021. https://doi.org/10.1093/jtm/taab104
- 334. Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine. 2021;384(20):1899-1909. https://doi.org/10.1056/NEJMoa2103055
- Buntz B. AstraZeneca, Pfizer Moderna vaccines fare well against Beta, Gamma and 335. Delta variants in study. Drug Discovery & Development. https://www.drugdiscoverytrends.com/astrazeneca-pfizer-moderna-vaccines-farewell-against-beta-gamma-and-delta-variants-in-study/, Published 2021, Updated 23 July 2021. Accessed 9 September 2021.
- 336. Choi A, Koch M, Wu K, et al. Serum Neutralizing Activity of mRNA-1273 against SARS-CoV-2 Variants. bioRxiv. 2021:2021.2006.2028.449914. https://doi.org/10.1101/2021.06.28.449914
- 337. Clemens SAC, Folegatti PM, Emary KRW, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun. 2021;12(1):5861. https://doi.org/10.1038/s41467-021-25982-w
- 338. Wall EC, Wu M, Harvey R, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet. 2021;397(10292):2331-2333. https://doi.org/10.1016/S0140-6736(21)01290-3
- Chagla Z. The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against 339. COVID-19 ≥7 days after the 2nd dose. Annals of Internal Medicine. 2021;174(2):JC15. https://doi.org/10.7326/ACPJ202102160-015
- Formica N, Mallory R, Albert G, et al. Evaluation of a SARS-CoV-2 Vaccine NVX-340. CoV2373 in Younger and Older Adults. medRxiv. 2021:2021.2002.2026.21252482. https://doi.org/10.1101/2021.02.26.21252482

