

Literature screening report

00.44.0004

COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (Updated Version 7)

Report submission date:	02.11.2021
Responsible authors:	Sabina Rodriguez Velásquez* A,B
Authors contributed equally	Gabriela Guizzo Dri A,B
Co-authors/	Muaamar Al Gobari B,C
collaborators:	Sara Botero-Mesa A,B
	Olivia Keiser ^A
Affiliation:	^A Institute of Global Health, University of Geneva, Switzerland
	^B Association Actions en Santé Publique (ASP) & The GRAPH Network,
	^c Department of Occupational and Environmental Health, Center for
	Primary Care and Public Health (Unisanté), University of Lausanne,
	Epalinges-Lausanne, Switzerland.

Coordination contact:	Jorgen Bauwens (SSPH+)

Abstract

This report focuses on the World Health Organization's (WHO) Emergency Use Listing (EUL) of authorized vaccines as of 02 November 2021. Currently six vaccines are authorised for emergency use: BNT162b2/COMIRNATY (Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA), Vaxzevria/ChAdOx1 nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP-CorV (China), and Sinovac/CoronaVac (China). This report provides a condensed summary concerning vaccine efficacy, safety, protection against variants, and further important information for each vaccine, in the form of a synoptic table. The information and data in this synoptic table was extracted from phase III clinical trials and from observational studies. This report particularly focuses on the latest data on vaccine effectiveness, mRNA COVID-19 vaccine for children, duration of protection and waning immunity, and booster doses.

Content

١	bstract	1
)	Content	2
	Preamble	3
	Background	3
	Methodology	4
	Results	4
	Latest Data on Vaccine Effectiveness for the Pfizer-BioNTech, Moderna and Janssen vaccines	4
	Vaccine Effectiveness against the Mu variant of concern	6
	Efficacy of BNT162b2 Booster Dose	6
	Heterologous Booster Doses	8
	mRNA Vaccines in Children (5-15)	9
	Myocarditis data	10
	Synoptic Table	12
	General Vaccine Information	12
	Effectiveness Against Any SARS-COV-2 Infection	14
	Effectiveness Against Variants	18
	Effectiveness Against Hospitalization	22
	Safety And Adverse Events	30
	Children Vaccination	36
	Heterologous Vaccination	41
	Booster Doses	44
	Heterologous Booster Doses	52
	Annexes	57
	Further Information	57
	Efficacy	59
	Efficacy Against Variants	61
	Phase III Trials Results	63
	Phase III Trial Other	65
	Vaccine Production Sites	66
₹	references	70

Preamble

A large number of scientific publications become available on a daily basis, reflecting the rapid development of knowledge and progress of science on COVID-19 related issues. Leading authorities should base decisions or policies on this knowledge; hence they need to master the actual state of this knowledge. Due to the large number of publications shared daily, decision makers heavily depend on accurate summaries of these publications, in the different public health domains. Therefore, the authors of this report were mandated by the Swiss School of Public Health plus (SSPH+), upon request of the Federal Office of Public Health (FOPH), to inform the FOPH on recent findings from the literature.

Background

According to the current global data on vaccinations, 49.6% of the world populations, of which only 3.7% of people in low-income countries, have received at least one dose of a marketed COVID-19 vaccine as of 02 November 2021¹. Currently, six vaccines [namely, Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA), Vaxzevria/ChAdOx1 nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP- CorV (China), and Sinovac/CoronaVac (China)] were assessed and granted an authorization by WHO as of 20 October 2021. Articles regarding the latest data on vaccine effectiveness, the duration of protection and waning immunity, efficacy and heterologous booster doses, and mRNA vaccines in children (5-15), were prioritized during the literature search and are the latest additions to the table. Data from clinical trials and observational studies for the six EUL-accepted vaccines and the vaccine candidate Novavax regarding these highlighted topics were summarized and can be found in the synoptic table below.

¹ https://ourworldindata.org/covid-vaccinations (accessed on 02.11.2021).

Methodology

We screened the data for the EUL-accepted vaccines and the vaccine candidate Novavax as of 02 November 2021 from PubMed, Embase, medRxiv, bioRxiv, Cochrane, and clinical trials databases such as ClinicalTrials and WHO Trial Registry. The methods used were reported previously and can be found in prior reports².

Results

As phase III COVID-19 vaccine trials confirmed vaccine efficacy and safety for all six WHO EUL authorized vaccines, and as the share of fully vaccinated people begin to increase across countries, it is important to assess vaccine effectiveness in real-world conditions, especially in relation to evolving variants of concern (VOC).

Latest Data on Vaccine Effectiveness for the Pfizer-BioNTech, Moderna and Janssen vaccines

Studies continue to report waning mRNA vaccine protection over time. The latest data published over the month of October demonstrates that Pfizer-BioNTech's BNT162b2/Comirnaty vaccine effectiveness steadily declines until approximately four months after the administration of the second dose and then stabilises around the 50% effectiveness mark (see synoptic table below). A large-scale U.S study reported BNT162b2 effectiveness was 53% (95% CI, 39-65) and 47% (95% CI, 43-51) four and five months after the second dose, respectively³. A Puerto Rican study additionally corroborates the US data: four months after the second dose, effectiveness waned from 87% (95% CI, 85-89) to 56% (95% CI, 53-59)⁴. A similar study that utilised U.S.

⁴ Time varying effectiveness of three COVID-19 vaccines in Puerto Rico. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.17.21265101v2

² COVID-19 vaccines: efficacy and safety (Literature Review 1). Swiss School of Public Health. https://www.bag.admin.ch/dam/bag/de/dokumente/mt/k-und-i/aktuelle-ausbrueche-pandemien/2019-nCoV/Literaturrecherchen/literaturrecherchen_covid-19-impfstoffe_20210209.pdf.download.pdf/20210209_Literaturrecherchen_Covid-19-Impfstoffe_EN.pdf

³ Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. *The Lancet*. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02183-8/fulltext

Veterans Health Administration (VHA) data, observed a large decline in vaccine protection from March 2021 [91% (95% CI, 91-92)] to August 2021 [50% (95% CI, 47-52)] for BNT162b2⁵. These declines in vaccine protection are in part due to the more transmissible and infectious Delta variant and waning vaccine immunity over time⁶. Moderna's mRNA-1273 vaccine also demonstrates waning vaccine immunity over time, however, the vaccine continues to demonstrate higher effectiveness levels (approximately between 60⁷ and 70%⁸) than Pfizer-BioNTech's mRNA vaccine. Two studies published over the month of October observed large declines in Janssen's single dasa Ad26 COV2 S vaccine. In Puerto Pice, Janssen's vaccine effectiveness.

Two studies published over the month of October observed large declines in Janssen's single dose Ad26.COV2.S vaccine. In Puerto Rico, Janssen's vaccine effectiveness declined from **58% (95% CI, 51-65)** to **27% (95% CI, 17-37)** four months after the administration of the second dose⁹, while a U.S. preprint observed a decline from **88% (95% CI, 98-89)** to **3% (95% CI, -7-12)** in vaccine effectiveness¹⁰. The authors did not provide an explanation for Janssen's extremely low effectiveness, however it could be impacted by the study's older population demographic (past studies have reported larger declines in vaccine protection over time among older persons (\geq 65 years) than younger individuals^{11,12,13,14}); approximately 50% of the participants (N=301,861 out of

¹⁴ Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. *Nature Medicine*. https://www.nature.com/articles/s41591-021-01548-7

⁵ Breakthrough SARS-CoV-2 infections in 620,000 U.S. Veterans, February 1, 2021 to August 13, 2021. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.13.21264966v1

⁶ See SSPH+ and FOPH Literature Screening Report. COVID-19 vaccines and post-vaccination data: Literature update (10) –

⁷ mRNA vaccine effectiveness against asymptomatic SARS-CoV-2 infection over a seven-month period. Infection Control & Hospital Epidemiology. <a href="https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/mrna-vaccine-effectiveness-against-asymptomatic-sarscov2-infection-over-a-sevenmonth-period/0B67BE1950C88E93B73C15F75E2FC497

⁸ Time varying effectiveness of three COVID-19 vaccines in Puerto Rico. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.17.21265101v2

⁹ Time varying effectiveness of three COVID-19 vaccines in Puerto Rico. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.17.21265101v2

¹⁰ Breakthrough SARS-CoV-2 infections in 620,000 U.S. Veterans, February 1, 2021 to August 13, 2021. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.13.21264966v1

¹¹ Prior infection and age impacts antibody persistence after SARS-Cov-2 mRNA vaccine. *Clinical Infectious Diseases*. https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab850/6373987

¹² Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. The Lancet. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02183-8/fulltext

¹³ Effectiveness of MRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.09.29.21264199v1.full

619,755) were aged 65 and above¹⁵. Despite Ad26.COV2.S low effectiveness against SARS-CoV-2 infection, it has been demonstrated to maintain high effectiveness against hospitalization **72.9% (95% CI, 35.1-91.1)** between the months of June and September in a Brazilian population¹⁶. Unfortunately, the Brazilian study could not assess potential declines in vaccine protection.

Given reports of reduced effectiveness against SARS-Cov-2 infection, it is important to mention that vaccine effectiveness remains high against severe infection, hospitalization, and death for all vaccines. Further vaccine effectiveness data can be found in the synoptic table below.

Vaccine Effectiveness against the Mu variant of concern

The Mu variant is partially resistant to neutralization by mRNA and adenoviral vector-based vaccine-elicited antibodies, however the resistance is similar to the Delta variant's resistance; the authors state that the "Mu variant does not present any additional concerns over Delta with which it is nearly identical"¹⁷. The authors' statement is corroborated by another study, which reported that the Moderna's (mRNA-1273) two-dose vaccine effectiveness was **86.7%** (**95% CI, 84.3-88.7**) against Delta infection and **90.4%** (**95% CI, 73.9-96.5**) against Mu infection¹⁸.

Efficacy of BNT162b2 Booster Dose

Recent studies evaluating and comparing the rate of confirmed SARS-CoV-2 infection and severe COVID-19 among persons, of different age groups, vaccinated during different time periods have demonstrated that the immunity against the Delta variant

¹⁵ Breakthrough SARS-CoV-2 infections in 620,000 U.S. Veterans, February 1, 2021 to August 13, 2021. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.13.21264966v1

¹⁶ Vaccine effectiveness of Ad26.COV2.S against symptomatic COVID-19 and clinical outcomes in Brazil: a test-negative study design. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.15.21265006v1

¹⁷ Neutralization of Mu and C.1.2 SARS-CoV-2 variants by vaccine-elicited antibodies in individuals with and without previous history of infection. *bioRxiv*. https://www.biorxiv.org/content/10.1101/2021.10.19.463727v1.full.pdf

¹⁸ Effectiveness of MRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.09.29.21264199v1.full

wanes in all age groups a few months after receipt of the second vaccine dose. Similar results were highlighted in the recently published Israeli study evaluating the waning immunity of the BNT162b2 vaccine in Israel. Based on the data of 4,791,398 vaccinated individuals aged 16 years old and over, the rate of COVID-19 infection was higher among individuals who became fully vaccinated earlier in the year than among those who were fully vaccinated 2 months later, for all age groups¹⁹. These concerning results have led countries to expand their booster platforms to include the general populations, such as the Israeli Ministry of Health who has recommended booster vaccinations to all over 12 years of age.

Despite the ongoing administration of booster doses to immunocompromised patients, older populations, and medical personnel and the expansion of booster platforms to include the general population, results from randomized trials on the efficacy and safety of booster doses remain limited. Recently, preliminary results from the first randomized, controlled COVID-19 vaccine booster trial aiming to evaluate the efficacy and safety of a booster dose of the BNT162b2 vaccine in individuals who previously received the full BNT162b2 jab were released²⁰. Based on the results, more than 10,000 participants 16 years of age and older who received their BNT162b2 booster dose showed a relative efficacy of 95.6% against any COVID-19 disease compared to individuals who did not receive a booster, during a period when Delta was the prevalent strain. Additionally, multiple subgroup analyses demonstrated that the efficacy was consistent irrespective of age, sex, race, ethnicity, or comorbid conditions. Overall, a third 30-ug booster dose of the BNT162b2 vaccine in individuals 16 years of age and older who previously received the full BNT162b2 jab demonstrated to be highly efficacious and safe across various age groups, sexes, races, ethnicities, and comorbid conditions.

Pfizer and BioNTech Announce Phase 3 Trial Data Showing High Efficacy of a Booster Dose of their COVID-19 Vaccine. [Press Release] Pfizer and BioNTech. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-phase-3-trial-data-showing

¹⁹ Waning Immunity after BNT162b2 Vaccine in Israel. NEJM. https://www.nejm.org/doi/full/10.1056/NEJMoa2114228

Effectiveness of BNT162b2 Booster Dose

To overcome the reported waning immunity of the BNT162b2 vaccine, the Israeli Ministry of Health announced a campaign to administer a third dose of the mRNA COVID-19 vaccine (Pfizer-BioNTech) to immunocompromised patients on 13 July 2021, which was later expanded to eventually include the general population over the age of 12 years on 30 August 2021. Based on the data repositories of Israel's healthcare organisation, the effectiveness of a third dose of the BNT162b2 mRNA vaccine for preventing severe COVID-19 outcomes was estimated²¹. A total of 728,321 individuals who received the booster dose were matched (1:1) to demographically and clinically similar controls who did not receive a third dose. The effectiveness of the third vaccine dose, compared with two doses only, was estimated to be 93% (95% CI: 88-97) against admission to hospital, 92% (95% CI: 82-97) against severe disease, and 81% (95% CI: 59-97) against COVID-19-related death. The third booster also demonstrated to be effective within different age groups with an estimated effectiveness against admission to hospital of 70% (95% CI: -70-100) for individuals aged 16 to 39 years, 92% (95% CI: 83-97) for individuals aged 40 to 69 years, and 93% (95% CI: 87-97) for individuals aged 70 years and over. Additionally, an estimated effectiveness against severe COVID-19 disease of 94% (95% CI: 85-99) for **40 to 69 years** and **92%** (95% CI: 83-98) for **70 years and over** was calculated. Overall, the results suggest that a third dose of the BNT162b2 mRNA vaccine is effective in protecting individuals against severe COVID-19-related outcomes across age groups, compared to individuals who only received two doses.

Heterologous Booster Doses

²¹ Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 for preventing severe outcomes in Israel: an observational study. *The Lancet*. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02249-2/fulltext

Although booster vaccinations continue to receive emergency use authorization for certain populations in multiple countries, the authorization is restricted to homologous schedules due to the limited data and information available on the safety, reactogenicity, and immunogenicity of heterologous booster vaccination. The Food and Drug Administration recently announced its plan to offer heterologous COVID-19 vaccine as booster, an announcement that could provide more flexibility to doctors and other vaccinators, especially for Janssen vaccine recipients wanting to receive a booster dose²². The announcement was preceded by a recent study presenting preliminary findings on the safety, reactogenicity, and humoral immunogenicity of heterologous SARS-CoV-2 booster vaccinations (focusing mRNA1273, and Ad26. COV2.S.)²³. Based on the study, the reactogenicity for the heterologous schedules was similar to the one reported for the primary vaccine jabs. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. The booster vaccines increased the neutralizing activity by 4.2 to 76fold and the binding antibody titers increased 4.6 to 56-fold for all combinations. Homologous booster increased neutralizing antibody titers 4.2-20-fold whereas the heterologous boost increased titers 6.2 to 76-fold. Overall, the homologous and heterologous booster vaccinations were well-tolerated and immunogenic.

mRNA Vaccines in Children (5-15)

Pfizer-BioNTech and Moderna COVID-19 vaccine have both been approved for 12–15-year-old people by both the FDA and EMA. Since then, many controlled trials and studies have been conducted to further monitor the vaccine's safety and immunogenicity, however, vaccine effectiveness against COVID-19 in-real world setting for children remained limited. Recent results on the Pfizer-BioNTech COVID-19 vaccine estimated vaccine effectiveness against SARS-CoV-2 among children

²³ Heterologous SARS-CoV-2 Booster Vaccinations – Preliminary Report. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.10.21264827v2.full-text

²² F.D.A. to Allow 'Mix and Match' Approach for Covid Booster Shots. *The New York Times*.

https://www.nytimes.com/2021/10/18/us/politics/fda-mix-and-match-boosters.html?referringSource=articleShare

aged 12 to 15 years old in Israel. Based on the retrospective cohort study, the vaccine was highly effective in this younger population with a reported effectiveness of **91.5%** 8 to 28 days after receiving the second dose against laboratory-confirmed SARS-CoV-2 infection²⁴. While the Pfizer-BioNTech and Moderna COVID-19 vaccines have been available for children 12-years and older, vaccination of younger children have yet to be approved. This may soon change as both Pfizer-BioNTech and Moderna have shared promising preliminary results of their vaccines in children younger than 12 years old. Based on Pfizer-BioNTech preliminary results of their phase 2/3 clinical trial, the BNT162b2 vaccine in children aged 5 to 11 years old had an efficacy of **90.7%** against confirmed COVID-19 and demonstrated to be safe and elicit a robust immune response²⁵. As for results of the randomized, observer-blind, placebo-controlled phase 2/3 clinical trial of the mRNA-1273 vaccine in healthy children aged 6 to 11 years old, the two 50 µg doses of mRNA-1273 demonstrated to be generally well tolerated in children and showed robust neutralizing antibody titers while meeting the primary immunogenicity endpoints²⁶.

Myocarditis Data

Reports of myocarditis, pericarditis and myopericarditis cases post COVID-19 vaccinations, particularly in young and adolescent populations, have raised some concerns regarding vaccine safety. Past studies have confirmed the benefits of anti-SARS-CoV-2 vaccine-induced immunity outweigh the risks of developing myocarditis or other cardiovascular related side effects post vaccination. Several studies that quantified the risk of developing myocarditis following mRNA vaccination were published throughout the month of October 2021 and corroborate previously reported

Moderna Announces Positive Top Line Data from Phase 2/3 Study of COVID-19 Vaccine in Children 6 to 11 years of Age.
Moderna Inc. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-top-line-data-phase-23-study-covid-19

²⁴ Effectiveness of BNT162b2 Vaccine in Adolescents during Outbreak of SARS-CoV-2 Delta Variant Infection, Israel, 2021. *CDC Emerging Infectious Diseases*. https://wwwnc.cdc.gov/eid/article/27/11/21-1886_article

²⁵ Vaccines and Related Biological Products Advisory Committee October 26, 2021. FDA/Pfizer-BioNTech. https://www.fda.gov/media/153409/download

myocarditis data: Developing myocarditis complications post-COVID-19 vaccination is rare and most cases are mild and resolve rapidly. Young men (16-29 years) however, do have an increased risk of developing complications compared to older individuals and/or women. Two Israeli studies estimated that the incidence of developing myocarditis for men of all ages was 4.12 cases (95% CI, 2.99-5.26)²⁷ and 3.19 cases (95% CI, 2.37-4.02)²⁸ per 100,000 vaccinated with the BNT162b2 vaccine. The estimated incidence for young males aged between 16 and 29 years were 10.69 cases (95% CI, 6.93-14.46)²⁹ and 13.60 cases (95% CI, 9.30-19.20)³⁰ per 100,000 vaccinated, respectively. For women of all ages, the estimated incidence rates were **0.23 cases (95% CI, 0-0.49)**³¹ and **0.39 cases (95% CI, 0.10-0.68)**³² per 100,000 vaccinated. Please refer to the synoptic table below for more estimated incidence rates of myocarditis cases. Most studies report myocarditis data per 100,000 vaccinated, however, due to the small number of observed cardiovascular complications in one US study (Simone et al. 2021)³³, this particular study reported cases per 1 million administered mRNA vaccine doses (50% received BNT1262b2 and the other 50% received mRNA-1273) (see synoptic table below for further information).

Further (biweekly) updated data on the six WHO EUL vaccines and the vaccine candidate Novavax are synthesized in the synoptic table and new data has been highlighted in yellow.

³³ Acute myocarditis following COVID-19 mRNA vaccination in adults aged 18 years or older. *JAMA Internal Medicine*. https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2784800

²⁷ Myocarditis after COVID-19 vaccination in a large health care organization. The New England Journal of Medicine. https://www.nejm.org/doi/10.1056/NEJMoa2110737

²⁸ Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. *The New England Journal of Medicine*. https://www.nejm.org/doi/10.1056/NEJMoa2109730

²⁹ Myocarditis after COVID-19 vaccination in a large health care organization. The New England Journal of Medicine. https://www.nejm.org/doi/10.1056/NEJMoa2110737

³⁰ Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. The New England Journal of Medicine. https://www.nejm.org/doi/10.1056/NEJMoa2109730

³¹ Myocarditis after COVID-19 vaccination in a large health care organization. *The New England Journal of Medicine*. https://www.nejm.org/doi/10.1056/NEJMoa2110737

³² Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. The New England Journal of Medicine. https://www.nejm.org/doi/10.1056/NEJMoa2109730

Synoptic Table

Synoptic table about SARS-CoV-2 vaccines accepted in the WHO's Emergency Use Listing and Novavax Vaccine (as of 29 October 2021)

							AWAITING APPROVAL FROM WHO EUL
	BNT162b2/ COMIRNATY (Pfizer-BioNTech, USA)	Spikevax/ Moderna COVID- 19 Vaccine/ mRNA-1273 (Moderna, USA)	Vaxzevria/ ChAdOx1 nCoV- 19/ AZD1222/ Covishield (AstraZeneca/Oxf ord, UK, India)	Janssen COVID- 19 vaccine/Johnson & Johnson (Janssen, USA)	Sinopharm/BBIB P-CorV, China	Sinovac CoronaVac, China	Novavax/ NVX- CoV2373
			GENERAL VACCI	NE INFORMATION			
Platform	mRNA-based vaccine	mRNA-based vaccine	Non-replicating vector-based vaccine	Non-replicating vector-based vaccine	Inactivated virus (Vero cell)	Inactivated virus (Vero cell)	Recombinant protein (nanoparticle) vaccine with Matrix-M adjuvant
Dose and frequency	2 doses, 21 days apart	2 doses, 28 days apart	2 doses, 4-12 weeks apart	1 dose, once [Phase III trials currently testing 2-	2 doses, 21 days apart	2 doses, 14 days apart	2 doses, 21 days apart

				dose regime, 56 days apart] ⁱ			
Target population	12 years old and over	12 years old and over	18 years old and over	18 years old and over	18 years old and over	18 years old and over	18 years old and over
Storage conditions	2°C to 8 °C (for 1 month)	2°C to 8 °C (for 1 month)	2°C until 8 °C	2°C to 8 °C (for 3 months)	2°C until 8 °C	2°C until 8 °C	2°C to 8 °C
Approving authorities	FDA (11.12.20) ⁱⁱ ; EMA (21.12.20); WHO EUL (31.12.20); and list of countries (including Switzerland – approved on 20.12.20)	FDA (18.12.20); EMA (06.01.21); WHO EUL (30.04.21); and list of 51 countries (including Switzerland – approved 12.01.21)	FDA (awaiting on approval); EMA (29.01.21); WHO EUL (15.02.21); and list of 121 countries (Switzerland awaiting on approval)	FDA (27.02.21); EMA (11.03.21), WHO EUL (12.03.21), and list of 59 countries (including Switzerland – approved 22.03.21)	WHO EUL (07.05.21); and list of 55 countries (e.g., Argentina, Bahrain, Brazil, China, Indonesia, United Arab Emirates, Zimbabwe)	WHO EUL (01.06.21), and list of 33 countries (e.g., Albania, Chile, Egypt, Hong Kong, Malaysia, Tunisia, Turkey, Ukraine)	Waiting on approval (Not-yet- approved by countries or WHO for emergency use)
Booster shot approving authorities	EMA approves booster for those aged 18 and above, 6 months after the 2 nd dose ¹	EMA authorises booster dose for immunocompromi sed individuals ^{iv} FDA approves a third booster dose					

¹ Johnson & Johnson Announces Real-World Evidence and Phase 3 Data Confirming Strong and Long-Lasting Protection of Single-Shot COVID-19 Vaccine in the U.S. *Johnson & Johnson*. https://www.jnj.com/johnson-johnson-announces-real-world-evidence-and-phase-3-data-confirming-strong-and-long-lasting-protection-of-single-shot-covid-19-vaccine-in-the-u-s

iv Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. *European Medicines Agency*. https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters

Ffizer-BioNTech's Comirnaty Vaccine received full FDA approval on 23 August 2021 for people age 16 and above, moving it beyond emergency use status. https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine

	FDA approves booster for those ages 16 and above, 6 months after the 2 nd dose ⁱⁱⁱ	for individuals older than 65 and high-risk individuals, 6 months after the 2 nd dose ^v					
		EFFECT	IVENESS AGAINST	ANY SARS-COV-2 IN	IFECTION		
Effectiveness single dose	General population: Against infection: 70%². 77.6% (95% CI, 70.9-82.7)³ 36.8% (95% CI, 33.2-40.2) [3 weeks after first dose]⁴ Individuals ≥70: Symptomatic disease: 58%⁵.	<u>General</u> <u>population:</u> Symptomatic disease: 60% (95% CI, 57-64; >2 weeks after dose) ⁷ .vii 88.9% (95% CI, 78.7-94.2) ³ <u>Individuals ≥ 70:</u> Symptomatic disease: 64% (95% CI, 46-78;	General population: Asymptomatic or symptomatic disease: 64%; Symptomatic disease: 67%8. Individuals ≥ 70: Symptomatic disease: 58%5. Hospitalization risk reduced by 35-45%5.	50.6% (95% CI, 14.0-74.0) in preventing SARS-CoV-2 infection (<2 weeks after dose); 76.7% (95% CI, 30.3-95.3) in preventing SARS-CoV-2 infection (>2 weeks after dose) ⁹ . 79% (95% CI, 77-80) (when corrected for	Partial protection ¹⁵ .x	15.5% for preventing COVID-19; 37.4% for preventing hospitalization; 44.7% for preventing admission to the ICU; and 45.7% for preventing of COVID-19 related death ¹⁶ . 18.6% (95% CI, 17.6-19.6) against SARS-COV-2	Ongoing studies in South Africa ¹⁸ and the United Kingdom ¹⁹

iii FDA authorizes booster dose of Pfizer-BioNTech COVID-19 vaccine for certain populations. FDA News Release. https://www.fda.gov/news-events/pressannouncements/fda-authorizes-booster-dose-pfizer-biontech-covid-19-vaccine-certain-populations

^{*} Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results.

F.D.A. Panel recommends booster for many Moderna vaccine recipients. The New York Times. https://www.nytimes.com/2021/10/14/us/politics/fdamoderna-vaccine-boosters.html

vii mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

reduced by 35- 45% ⁵ . Risk of death reduced by 54% ⁵ . Ind ≥ 1 . firs (95 Individuals ≥ 50 : ≥ 14 days after first dose: 54% (95% CI, 47-61)	2 weeks after ose) ^{7.√iii} dividuals ≥50: 14 days after ost dose: 54% 5% CI, 47-61) fectiveness gainst ospitalization [1 onuary-22 one ⁶ . ix	under-recording, VE was estimated to be 69% (95% CI, 67-71) ¹⁰ . 81% (95% CI, 79- 84) for preventing hospitalization when corrected for under-recording, VE was estimated to be 73% (95% CI, 69-76) ¹⁰ . 75% (95% CI, 65- 82) against severe critical COVID- 19 ¹¹ . 71% (95% CI, 56- 81) [11 March – 15 August] ¹² .	infection, 28.1% (95% CI, 26.3- 29.9) against hospitalization, 28.5% (95% CI, 25.4-31.4) against ICU admission, and 29.4% (95% CI, 26.7.3-31.9) against death [January-April] ¹⁷	
--	---	--	--	--

ix mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

vi mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

viii mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

				50.9% (95% CI, 35.1-63.0) [June-September; Brazil] ¹⁴ Individuals ≥ 50: 68% (95% CI, 50-79) ⁶ .			
Effectiveness of two doses	SARS-Cov-2 infection: 85% ² . 94.6% ²⁰ . 94.5% ²¹ . 76% (95% CI, 69-81) [January-July] ²² . 88.8% (95% CI, 84.6-91.8) [December-May] ³ 74% (95% CI, 72-76) [January-June] ¹³	SARS-Cov-2 infection: 100% ²⁰ . 86% (95% CI, 81- 90.6) [January- July] ²² . 96.3% (95% CI, 91.3-98.4) [December-May] ³ 85% (95% CI, 80- 90) [January- June] ¹³ 71% (95% CI, 68- 74) [4 months	SARS-CoV-2 infection: 53% (95% CI, 12-84) [January-June] ¹³ 27% (95% CI, 17-37) [4 months after second dose] ²⁴ Symptomatic disease: 90% ⁸ .	Not Applicable (one dose schedule)	Partial protection ¹⁵ .xvi	65.9% for preventing COVID-19; 87.5% for preventing hospitalization; 90.3% for preventing ICU admission; and 86.3% for preventing COVID-19 related death ¹⁶ . 52.7% (95% CI, 52.1-53.4) against SARS-CoV-2 infection, 72.8% (95% CI, 71.8-73.7) against	Ongoing studies in South Africa ¹⁸ and the United Kingdom ¹⁹

xvi Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results. Death reports on fully vaccinated doctors (10 cases during June 2021 in Indonesia). It may be related to new variants [media report]. Indonesian Covid deaths add to questions over Sinovac vaccine. The Guardian [press release]. https://www.theguardian.com/world/2021/jun/28/indonesian-covid-deaths-add-to-guestions-over-sinovac-vaccine

77.5% (95% CI, 76.4-78.6) [first month after second dose] ⁴ 47% (95% CI, 43-51) [5 months after second dose] ²³ 56% (95% CI, 53-59) [4 months after second dose] ²⁴	after second dose] ²⁴ 63% (95% CI, 44-76) [June-August] ²⁶ <u>Symptomatic disease</u> : 91% (95% CI, 89-93; >2 weeks after dose) ⁷ .xiii		hospitalization, 73.8% (95% CI, 72.2-75.2) against ICU admission, and 73.7% (95% CI, 72.3-75.0) against death [January-April] ¹⁷	
Asymptomatic SARS-CoV-2 infection: 90.6% ²⁵ .xi 73.1 (95% CI, 70.3-75.5) ⁴ Hospitalization: 85% (95% CI, 73- 93) [January- July] ²² . 88% (95% CI, 85- 91) [11 March – 15 August] ¹² .	Asymptomatic SARS-CoV-2 infection: 90.6% ²⁵ .xiv 71% (95% CI, 61-78) [January-August] ²⁶ Hospitalization: 91.6% (95% CI, 81-97) [January-July] ²² .			

xi Results do not disaggregate between BNT162b2 and mRNA-1273

xiv Results do not disaggregate between BNT162b2 and mRNA-1273

 $^{^{\}text{xiii}}$ Results do not disaggregate between BNT162b2 and mRNA-1273.

	89% (95% CI, 87- 91) for individuals ≥50 years [1 January-22 June ⁶ . xii 90% (95% CI, 89- 92) [Dec 2020 – Aug 2021] ²³ Individuals ≥65: 61% (95% CI, 57- 65) against SARS- CoV-2 infection and 86% (95% CI, 82-88) against hospitalizations ²³	93% (95% CI, 91- 95) [11 March – 15 August) ¹² . 89% (95% CI, 87- 91) for individuals ≥50 years [1 January-22 June ⁶ . xv					
			EFFECTIVENESS A	GAINST VARIANTS	vii		
Alpha (B.1.1.7)	Single dose: 48.7% (95% CI, 45.5 to 51.7) ²⁷ 66% (95% CI,64-68) ²⁸ . 54.5% (95 CI, 50.4-58.3) ²⁹	Single dose: 88.1% (95% CI, 83.7 to 91.5) ³² 83% (95% CI, 80- 86) ²⁸ . Two doses:	Single dose: 48.7% (95% CI 45.5 to 51.7) ²⁷ 6 4% (95% CI, 60-68) ²⁸ .	-	No published data	Two doses: Equally effective (~76%) in neutralizing D614G, B.1.1.7 and B.1.429 as the wild-type strain.	Ongoing studies in South Africa ¹⁸ and the United Kingdom ¹⁹

xii mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

xvii Effectiveness data against the latest variant of interest (Mu) will be included in upcoming reports based on data availability.

xv mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

	Two doses: 93.7% (95% CI, 91.6 to 95.3) ²⁷ 92% (95% CI, 90- 93) ³⁰ . 89% (95% CI, 86- 91) ²⁸ . 78% (95% CI, 68- 84) ³¹ 84.4% (95 CI, 81.8-86.5) ²⁹	100% (95% CI, 91.8 to 100) ³² 92% (95% CI, 86-96) ²⁸ . 98.4% (95% CI, 96.9-99.1) ³³	74.5% (95% CI, 68.4 to 79.4) ²⁷ 73% (95% CI, 66-78) ³⁰ . 79% (95% CI, 56-90) ³¹ .				
Beta (1.351)	Single dose: 60% (95% CI, 52-67) ²⁸ . Two doses: 84% (95% CI, 69-92) ²⁸ .	Single dose: 61.3% (95% CI, 56.5 to 65.5) ³² 77% (95% CI, 69- 92) ²⁸ . Two doses: 96.4% (95% CI, 91.9 to 98.7) ³²	<u>Single dose:</u> 48% (95% CI, 28-63) ²⁸ .	-	No published data	Neutralization capacity was decreased by factor 5.27 ³⁴ .	No available data
Gamma (P.1)	Neutralization activity reduced by 3.3-fold ³⁵ .	-	-	-	No published data	Demonstrated 42% vaccine effectiveness in a setting with high P.1 transmission, in individuals aged 70 and above ³⁶ .	No available data

	Single dose:	Single dose:			50.2% against P.1 (>14 days after 2 nd dose) ³⁷ . Neutralization was decreased by factor 3.92 ³⁴ .	
Delta (1.617.2)	30.7% (95% CI, 25.2 to 35.7) ²⁷ ; 57% (95% CI, 50-63) ³¹ 22.5% (95 CI, 17.0-27.4) ²⁹ Two doses: 88.0% (95% CI, 85.3 to 90.1) ²⁷ ; 80% (95% CI, 77-83) ³¹ 79% (95% CI, 75-82) ³⁰ . 80% (95% CI, 77-83) ³¹ 40.5% (95% CI, 77-83) ³¹ 40.5% (95% CI, 8.7-61.2) ³⁸ . 42% (95% CI, 13-62) ²² . 89.8% (95% CI, 89.6-90.0) [2-9 weeks after second dose] ³⁹ .	72% effective against symptomatic SARS-Cov-2 infection ⁴² . ≥14 days after second dose: 76% (95% CI, 58-87) ²² . 94.5% (95% CI, 94.1-95) [2-9 weeks after second dose] ³⁹ . 50.6% (95% CI, 45.0-55.7) [among nursing home residents] ⁴⁰ . 86.7% (95% CI, 84.3-88.7) ³³ 56.6% (95% CI, 42.0-67.5) against infection ⁴³ 84.2% (95% CI, 56.4-94.3) against	Single dose: 30.7% (95% CI 25.2 to 35.7) ²⁷ Two doses: 67.0% (95% CI, 61.3 to 71.8) ²⁷ 67% (95% CI, 62- 71) ³¹ . 60% (95% CI, 53- 66) ³⁰ . 66.7% (95% CI, 45-49.6) [2-9 weeks after second dose] ³⁹ . 47.3% (95% CI, 66.3-67.0) [≥20 weeks after second dose] ³⁹ . Odds ratio of 5.45 (95% CI, 1.39- 21.4) to become infected with B.1.167.2	78% (95% CI, 73-82) against SARS-CoV-2 infection¹0. 3% (95% CI, -7-12) [August]⁴¹ Individuals ≥50: 83% (95% CI, 81-85)¹0	Single dose: 13.8% (95% CI, - 60.2-54.8) ⁴⁵ . Two doses: 59% (95% CI, 16- 81.6) against SARS-CoV-2 infection and 70.2% (95% CI, 29.6- 89.3) against moderate COVID- 19 infection ⁴⁵ .	No available data

	69.7% (95% CI, 68.7-70.5) [≥20 weeks after second dose] ³⁹ . 64.6% (95 CI, 60.6-68.2) ²⁹ 52.4% (95% CI, 48.0-56.4) [among nursing home residents] ⁴⁰ . 53% (95% CI, 39-65) [4 months after second dose] ²³ 50% (95% CI, 47-52) [August; elderly Veteran population] ⁴¹ Against severe COVID-19: 91.4% (95% CI, 82.5-95.7) ³⁸ .	symptomatic infection ⁴³ 64% (95% CI, 62-66) [August; elderly Veteran population] ⁴¹ 10-14 weeks after second dose: 90.3% (95% CI, 67.2-97.1) ³⁹ .	compared to non-B.1.167.2 ⁴⁴ .				
Mu (B.1.621)	No available data	Two doses: 90.4% (95% CI, 73.9-96.5) ³³ (demonstrated similar protective measures as	No available data	No available data	No available data	No available data	No available data

Literature screening report: COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (Updated Gabriela Guizzo Dri

		against the Alpha variant)					
		EF	FECTIVENESS AGA	INST HOSPITALIZA	TION		
	Single dose: 83% (95% CI, 62-93) Two doses: 95% (95% CI, 78-99) ⁴⁶ .		Single dose: 76% (95% CI, 61-85) Two doses: 86% (95% CI, 53-96) ⁴⁶ .	Beta 67% effective at preventing hospitalizations ⁴⁷ .			
Alpha	Against death: 98.2% (95% CI, 95.9-99.2) [2-9 weeks] ³⁹ . 90.4% (95% CI, 85.1-93.8) [≥20 weeks] ³⁹ .		Against death: 94.1% (95% CI, 91.8-95.8) [2-9 weeks] ³⁹ . 78.7% (95% CI, 52.1-90.4) [≥20 weeks] ³⁹ .	Against death: 96% effective at preventing death ⁴⁷ .	-	-	No available data
Gamma	-	-	-	72.9% (95% CI, 35.1-91.1) ¹⁴ Against ICU admission: 92.5% (95% CI, 54.9-99.6) ¹⁴ Against death: 90.5% (95% CI, 31.5-99.6) ¹⁴	-	-	No available data

Delta	Single dose: 94% (95% CI, 46- 99) ⁴⁶ . 91% (95% CI, 90- 93) ⁴⁸ Two doses: 96% (95% CI, 86- 99) ⁴⁶ . 88% (95% CI, 86- 99) ⁴⁶ . 88% (95% CI, 24- 93.9) ²² . 84% (95% CI, 79- 89) ⁴⁹ . 98.4% (95% CI, 79- 89) ⁴⁹ . 97.9-98.8) [2-9 weeks] ³⁹ . 92.7% (95% CI, 90.3-94.6) [≥20 weeks] ³⁹ . 96% (95% CI, 95- 96) ⁴⁸ 80% (95% CI, 73- 85) [June- August] ⁵⁰	Single dose: 81% (95% CI, 81- 90.6) ²² . Two doses: 84% (95% CI, 80- 87) ⁴⁸ 95% (95% CI, 92- 97) [June- August] ⁵⁰ Against ICU admission: 86% (95% CI, 79- 90) ⁴⁸ 96% against severe COVID-19 infection ⁴² .	Single dose: 71% (95% CI, 51-83) ⁴⁶ 88% (95% CI, 83-91) ⁴⁸ Two doses: 92% (95% CI, 75-97) ⁴⁶ . 95.2% (95% CI, 75-97) ⁴⁶ . 95.6) [2-9 weeks] ³⁹ . 77.0% (95% CI, 70.3-82.3) [≥20 weeks] ³⁹ . 94% (95% CI, 92-95) ⁴⁸ Against ICU admission: Single dose: 92% (95% CI, 84-96) ⁴⁸ Two doses: 96% (95% CI, 94-98) ⁴⁸ Against death:	71% ⁴⁷ 85% (95% CI, 73-91) ¹⁰ . 91% (95% CI, 88-94) ⁴⁸ 85% effective at preventing severe disease and hospitalization ⁵³ . Individuals ≥50: 84% (95% CI, 81-85) ¹⁰ Against ICU admission: 94% (95% CI, 88-98) ⁴⁸	Single dose: Does not offer clinically meaningful protection against severe illness 54,xviii Two doses: 88% (95% CI, 55-98) adjusted risk reduction in developing severe illness.54,xix	Single dose: Does not offer clinically meaningful protection against severe illness 54,xx Two doses: 88% (95% CI, 55-98) adjusted risk reduction in developing severe illness.54,xxi	
-------	--	--	---	--	--	---	--

 $_{ ext{xviii}}$ Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

xxi Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

xix Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

xx Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

DURATION OF PROTECTION & TRANSMISSION

Duration of	of
protection	n
(antibodie	c١

Median time between second dose and infection: 146 days (IQR,

121-167)⁵⁵

Anti-SARS-CoV-2 Antibodies:

1 month after 2nd dose: 1762 KU/L (IQR: 933-3761) 3 months after 2nd

dose: 1086 KU/L (IQR: 629-2155)

Preliminary phase I results:

Antibody activity remained high in all age groups at day 209 (approximately 6 months) **GMT** were lower

in ≥56 years old⁵⁹

Response: After single dose, antibody response declined within one year, but remained above baseline levels. Antibody levels after day 180: 0.54 GMR (CI, 0.47-0.61). Antibody levels after day 320:

Antibody

Neutralizing antibodies: Remained largely stable for 8-9 months⁶¹

Binding antibodies: Remained stable 6 months irrespective of age group⁶¹

Antibody Response: Unexposed subjects: After 1st dose: 43.6 IU/mL (95% CI, 30.3-62.8)

After 2nd dose: 377.0 IU/mL (95% CI: 324.3-438.3) 3 months after 2nd dose: 125.4 IU/mL (95% CI: 88.2-178.4)⁶³

A phase I/II clinical trial found that NAbs titres dropped below the seropositive cutoff of 8, 6 months after the administration of the first dose⁶⁴.

80-90% of anti-S IgG and Nab titers against wild type waned 6 months after second vaccination65

6 months after 2nd dose: 802 KU/L (IQR, 447-1487)⁵⁶

No health worker had antibodies BELOW methoddependent cut-off (0.8 KU/L)

Anti-spike Protein RBD IaG Antibodies: Younger age

groups (<60): 1 month after 2nd dose: 100% seropositivity, 35.3 (IQR, 27.6-40.0) 3 months after 2nd dose: 100% seropositivity, 19.2 (IQR, 8.2-23.1)57

Older age groups (≥60):

1 month after 2nd dose: 100% seropositivity, 29.4 (IQR, 22.5-33.3) 3 months after 2nd dose: 100%

0.30 GMR (CI, $0.24 - 0.39)^{60}$

Cellular Immune Response: Day 182 after first dose: median of 237 SFUx10⁶ PBMC (IQR, 109-**520)**⁶⁰

6 months after second dose: (median 1240. **IQR 432-2002**) in groups with 15-25 week interval between doses⁶⁰

Anti-spike Protein RBD laG Antibodies: Younger age groups (<60): 1 month after 2nd dose: 100% seropositivity, **17.1** (IQR, 9.9-23.6) 3 months after 2nd

seropositivity, 6.5

(IQR, 3.5-9.3)⁵⁷

dose: 97%

Humoral & Cellular Immune Response: Antibody responses were detected in all vaccine recipients on **day 239** (stable response for at least 8 months)62

Exposed subjects: Before 1st dose: **203.2 UI/mL** (95% CI: 42.9-962.4) After 1st dose: 761.7 UI/mL (95% CI: 381.1-1522) After 2nd dose: **719.9 Ul/mL** (95% CI: 264.6-1959) 3 months after 2nd dose: 484.4 IU/mL (95% CI: 147.3- $1593)^{63}$

Anti-spike Protein RBD IaG Antibodies: Younger age groups (<60): 1 month after 2nd dose: 97% seropositivity, 11.3 (IQR, 6.2-20.7) 3 months after 2nd dose: 76% seropositivity, 2.4 (IQR. 1.0-5.0)57

(≥60): 1 month after 2nd dose: 88% seropositivity, 6.4 (IQR, 2.5-13.6) 3 months after 2nd dose: 60% seropositivity, 1.3 (IQR, 0.5-3.3)57

Older age groups

	211	
seropositivity, 14.8	Older age groups	
(IQR, 7.4-18.7) ⁵⁷	(≥60):	
Cub nanulations	1 month after 2 nd	
Sub-populations:	dose: 96%	
Older age (≥65): 38% to 42%	seropositivity, 13.3	
decrease of	(IQR, 6.9-27.7) 3 months after 2 nd	
humoral	dose: 90%	
antibodies	seropositivity, 3.9	
compared to 18-	(IQR, 1.9-8.4) ⁵⁷	
to 45-year-old ⁵⁸	(1911, 110 0.1)	
to to your old		
Older age (≥65)		
AND men:		
37% to 46%		
decrease		
compared to 18-		
to 45-year-old		
women ⁵⁸		
Immunosuppress		
ion:		
65% to 70%		
decrease compared to non-		
immunosuppresse		
d ⁵⁸		
-		
Obesity (BMI		
≥30):		
31% increase in		
neutralizing		
antibody		

Duration of	Effectiveness against any SARS-CoV-2 Infection: After reaching peak VE (77.5%) 1 month after 2 nd dose, VE dropped to 20% in months 5-7 after 2 nd dose ⁶⁶ VE reduced from	36.4 (95% CI, 17.1-51.5) reduction of observed incidence rate (SARS-CoV-2 infection) if vaccinated from Dec 2020 – Apr 2021 than Jul 2021 – Dec 2020. ⁶⁷ 46.0 (95% CI, -	VE reduced by 7% (95% CI, -18 - 2) for every 30 days from the second dose for those aged 18 to 64 years ³¹ . VE reduced from	A study observed sustained and stable vaccine effectiveness starting 14 days post vaccination to a maximum of 152		
protection (vaccine effectiveness)	87% (95% CI, 85-89) to 56% (95% CI, 53-59) after 4 months. ²⁴ VE reduced from 91% (95% CI, 91-92) in March to 50% (95% CI, 47-52) in August ⁴¹ Effectiveness against Hospitalization and Death:	reduction of observed incidence rate (severe SARS-CoV-2 infection) if vaccinated from Dec 2020 – Apr 2021 than Jul 2021 – Dec 2020. ⁶⁷ VE against the Delta variant declined from	58% (95% CI, 51-65) to 27% (95% CI, 17-37) after 4 months. ²⁴ VE reduced from 88% (95% CI, 87-89) in March to 3% (95% CI, -7-12) in August ⁴¹	days after vaccination ¹⁰ . VE decreased from 89.4% in May to 51.7% in July ²⁶		

|--|

Literature screening report: COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (Updated Gabriela Guizzo Dri

		VE reduced from 92% (95% CI, 92- 93) in March to 64% (95% CI, 62- 66) in August ⁴¹					
Transmission prevention	Prior Delta Variant: Vaccine effectiveness against infectiousness given infections 41.3%68 Vaccine effectiveness against transmission 88.5%68 During Delta Variant: Similar Ct values (<25) were found in both vaccinated and unvaccinated and unvaccinated groups69 Studies from Scotland and England demonstrated reductions in	VE against onwards transmission: 52% (95% CI, 33-69) ¹³	48% (limited data) May not be able to block the transmission of the alpha variant as efficiently as the wild type ⁷² .	Limited data	Unknown	Unknown	

	secondary infections among families of vaccinated individuals compared to families of unvaccinated individuals ^{70,71} . VE against onwards transmission: 62% (95% CI, 57-67) ¹³						
			SAFETY AND A	DVERSE EVENTS			
Common side effects	Pain at the injection site, fatigue, headache, myalgia, chills and fever. ⁷³ Optimal safety for asthma patients ⁷⁴ . The vaccine is considered safe for cancer patients undergoing treatments ⁷⁵ .	Pain at injection site, headache, fatigue, myalgia, arthralgia ⁷⁶ , Covid arm (cutaneous hypersensitivity) ⁷⁷ . The vaccine is considered safe for cancer patients undergoing treatments ⁷⁵ .	Fatigue, myalgia, arthralgia, headache ⁷⁸ , lethargy, fever, & nausea ⁷⁹ .	Headache, fever, chills, fatigue, myalgia, and nausea ⁸⁰ .	Pain at the injection site, dizziness, fever, headache, fatigue, nausea, vomiting, & allergic dermatitis ^{79,81} .	Pain at injection site, headache, fatigue, tremors, & flushing ⁸² , inflammatory reaction, urticaria ⁸³ .	Pain at injection- site, headache, muscle pain, fatigue ⁸⁴

Gabriela Guizzo Dri

arrhythmia, leg paresthesia ⁹⁰ , ophtalmicus ¹²² , pityriasis rosea ⁹¹ (lesions improved completely after ~8 weeks) ⁹² , lymphocytic vasculitis ⁹³ , varicella-zoster reactivation 94-96, Kikuchi-Fujimoto disease ⁹⁷ , thrombocytopenic purpura ^{98,99} , IgA nephropathy flareuppi ¹⁰⁰ , Guillain-barreuppi ¹⁰⁰ , Vaccineupvii and control group within 7 days ¹⁰² , Most reactions improved within 7 days ¹⁰² , becaceine induced thrombocytopeic thrombocytopeic thrombocytopeic thrombocytopeic thrombosis ¹⁶¹ 97% of reported vaccine ophtalicus ¹²² , pityriasis rosea ¹⁶³ , uveitis ¹⁶⁴ 97% of reported vaccine pohalinicus ¹²³ ,	
---	--

xxii All cases occurred in patients with chronic urticaria and were being treated with cyclosporine.

Rare adverse events

Barré syndrome 101,102, pustural psoriasis 103, immunoglobulin A vasculitis 104, immune complex vasculitis 105, Rhabdomyolysis 10 6, subacute thyroiditis 107, Bell's Palsy 108, erythema multiforme 109, vaccine induced interstitial lung disease 110, macular neuroretinopathy 11 1, brachial neuritis 112, thyroid eye disease 113, exacerbation of subclinical hyperthyroidism 114 , rhabdomyolysis 115, internal jugular vein thrombosis 116, herpes simplex virus keratitis 117, cervical lymphadenopathy 1 18, glomerulonephri	myelitis ¹²⁴ , Guillain-Barré syndrome ^{125,126} , acute generalized exanthematous pustulosis ¹²⁷ , rhabdomyolysis ¹²⁸ , ¹²⁹ , cervical lymphadenopathy ¹³⁰ , glomerulonephritis ¹¹⁹	bullous fixed drug eruption ¹⁴⁶ , Guillain-Barré syndrome ^{102,147} , pityriasis rosea ^{148,149} . Vaccination in individuals with adrenal insufficiency can lead to adrenal crises ¹⁵⁰ , Dariers disease ¹⁵¹ , vaccine induced acute localized exanthematous pustulosis ¹⁵² , Henoch-Schönlein Purpura ¹⁵³ , rhabdomyolysis ¹⁵⁴ , Grave's disease ¹⁵⁵ , acute demyelinating polyradiculoneuro pathy ¹⁵⁶ , erythema nodosum ¹⁵⁷				
---	---	--	--	--	--	--

Literature screening report: COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (Updated Gabriela Guizzo Dri

	tis ¹¹⁹ , Ramsay- Hunt syndrome ¹²⁰						
Potential associated adverse events (causal links not yet proven)	Cerebral venous sinus thrombosis and intracranial haemorrhage ¹⁶⁸ , aseptic meningitis ¹⁶⁹ , autoimmune hepatitis ^{170,171} , multiple sclerosis relapse ¹⁷² , myeloperoxidase anti-neutrophil cytoplasmic antibody-positive optic perineuritis ¹⁷³ , central retinal vein occlusion ¹⁷⁴ , paracentral acute middle maculopathy & acute macular neurotinopathy ¹⁷⁵ ,	Autoimmune hepatitis ¹⁷⁰ , myocardial infarction ¹⁸⁰ , autoimmune haemolytic anaemia ¹⁸¹ , hypophysitis & panhypopituitaris m ¹⁸² , erythema nodosum-like rash ¹⁸³ , pulmonary embolism ¹⁸⁴ One case developed IgA Nephropathy after receiving the second dose of mRNA-1273 (causal link not yet proven) ¹⁸⁵ .	Autoimmune hepatitis ^{170,186,187} , Acute hyperglycaemic crisis ¹⁸⁸ , Facial nerve palsy, cervical myelitis ¹⁴³ , alopecia areata ¹⁸⁹ , takotsubo (stress) cardiomyopathy ¹⁹⁰ , acute disseminated encephalomyelitis ¹ 91	Facial Diplegia ¹⁹²	-	-	No available data

	Stevens-Johnson syndrome/ toxic epidermal necrolysis ^{176,177} , lichenoid cutaneous skin eruption ¹⁷⁸ , acute mania and psychotic features ¹⁷⁹						
Myocarditis data	Mainly reported in young adults and adolescents ¹⁹³ Israeli study: Estimated incidence within 42 days after receipt of first dose per 100,000 vaccinated persons was 2.13 cases (95% CI, 1.56-2.7) ¹⁹⁴ Male patients Incidence of 4.12 (95% CI, 2.99-5.26) per 100,000 vaccinated ¹⁹⁴ 3.19 cases (95% CI, 2.37-4.02) per	Mainly reported in young adults and adolescents ¹⁹³ 5.8 cases per 1 million second dose administrations ¹⁹⁶	No available data	No available data	No available data	No available data	Myocarditis was reported as viral myocarditis. Participant fully recovered after 2 days of hospitalisation. No episode of anaphylaxis or vaccine-associated enhanced COVID-19 was reported ⁸⁴

100,000 vaccinated ¹⁹⁵			
Female patients Incidence of 0.23 (95% CI, 0-0.49) per 100,000 vaccinated ¹⁹⁴			
0.39 cases (95% CI, 0.10-0.68) per 100,000 vaccinated ¹⁹⁵			
≥30 years Incidence of 1.13 (95% CI, 0.66- 1.60) per 100,00 vaccinated ¹⁹⁴			
5.8 cases per 1 million second dose administrations ¹⁹⁶			
5.07 cases per 100,000 ¹⁹⁷			
<u>Disease severity</u> Mild: 1.62 (95% CI, 1.12-2.11)			

	Intermediate: 0.47 (95% CI, 0.21-0.74) Fulminant: 0.04 (95% CI, 0-0.12) ¹⁹⁴ Risk per 100,000 persons 1st dose (male): 0.64 2nd dose (male): 3.83 1st dose (female): 0.07 2nd dose (female): 0.46 1st dose (male 16-19): 1.34 2nd dose (male 16-19): 1.34							
CHILDREN VACCINATION								
Efficacy	Adolescents (12- 15): After one dose had efficacy of 75% (CI, 7.6-95.5)	Adolescents (12- 17): After one dose had efficacy of 92.7% (CI, 67.8- 99.2)	No available data Paused ongoing trials in children aged 6-17 due to concerns over	Announced at begging of April ongoing study in adolescents but	Children (3-17): Unknown. Ongoing clinical trial only looked at safety, tolerability,	Children (3-17): Unknown. Clinical trial only looked at safety, tolerability	Adolescents (16-17): PREVENT-19 clinical trial*xiv expanded to	

xxiv A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥18 Years With a Pediatric Expansion in Adolescents (12 to <18 Years) at Risk for SARS-CoV-2. ClinicalTrials.gov. ClinicalTrials.gov Identifier: NCT04611802. https://clinicaltrials.gov/ct2/show/NCT04611802?term=Novavax&cond=Covid19&draw=2

36/88

	After second dose efficacy of 100% (CI, 78.1-100) ¹⁹⁸ . Children (5-11): After second dose efficacy of 90.7% (CI, 67.7-98.3) ¹⁹⁹ Children (Under 5 years): Ongoing trials ²⁰⁰	After second dose efficacy of 93.3% (CI, 47.9-99.9) ²⁰¹ . <u>Children (6month-11):</u> Ongoing trials ²⁰²	rare blood clots reported in adult population ²⁰³ .	paused to investigate blood clots in adult population ²⁰³ .	and immunogenicity*xiii * * The study design administered three doses of 2 µg, 4 µg, or 8 µg of vaccine	and immunogenicity ²⁰⁴ .	assess efficacy, safety, and immunogenicity in 12–17-year- old adolescents ²⁰⁵
Immunogenicity	Adolescents (12-15) serum-neutralizing titer: 1 month after 2nd dose had 1283.0 GMN ₅₀ (CI, 1095.5-1402.5) ¹⁹⁸ . Adolescents/youn g adult (16-25) serum-neutralizing titer: 1 month after 2nd dose had 705.1 GMN ₅₀ (CI, 621.4-800.2) ¹⁹⁸ .	Adolescents (12-17): Neutralizing antibody titer after 2 nd dose was 1401.7 GMN ₅₀ (CI, 1276.3-1539.4) Serological response was 98.8% (CI, 97.0-99.7) Children (6-11): Seroreponse of 99.3% ²⁰⁷	No available data	No available data	Children (3-17): Neutralizing antibodies after 28 days after 2 nd dose ranged from 105.3-180.2 GMT in 3-5 years cohort, 84.1-168.6 GMT in 6-12 years cohort, and 88.0- 155.7 GMT in 13- 17 years cohort Neutralizing antibodies after 28 days after 3 rd dose ranged from	Children (3-17): Neutralizing antibody response after 2 nd dose (100%) with GMT ranging from 45.9-212.6 ²⁰⁴	Ongoing clinical trial ²⁰⁹

xxiii Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. *The Lancet Infectious Diseases*. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00462-X/fulltext

	Children (5-11): 1 month after 2 nd dose had 1,197.6 GMT (95% CI, 1106.1-1296.6) SARS-CoV-2- neutralizing antibody ²⁰⁶ Children (Under 5): Ongoing trials ²⁰⁰	Children (6month- 11): Ongoing trials ²⁰²			143.5-224.5 GMT in 3-5 years cohort, 127-184.8 GMT in 6-12 years cohort, and 150.7- 199 GMT in 13-17 years cohort ²⁰⁸		
Effectiveness	Against SARS- CoV-2 infection: 91.5% (95% CI, 88.2-93.9) ²¹⁰ 91% (95% CI, 88- 93) ²¹¹ Against hospitalization: 81% (95% CI, -55- 98) ²¹¹ 93% (95% CI,83- 97) ²¹²	No available data	No available data	No available data	No available data	No available data	No available data
Safety and Adverse events	Adolescents (12- 15): Local and systemic events	Adolescents (12- 17): Solicited local reactions after 2nd dose (93.4%)	No available data	No available data	Children (3-17): Most common adverse reaction was pain at injection site in 3-	Children (3-17): Adverse reactions in 12–17 year group (35%), 3-5 year group (26%),	Ongoing clinical trial ²⁰⁹

were generally mild to moderate Severe injection-site pain (1.5%) Fever (20%) High Fever (0.1%) Adverse events (6%) Severe adverse events (0.6%) Adolescent/young adults (16-25): Local and systemic events were generally mild to moderate Severe injection-site pain (3.4%) Fever (17%) Adverse events (6%) Severe adverse events (1.7%) Preliminary results on safety profile are consistent with those observed in older populations 206	Most common solicited adverse reactions were Injection-site pain (92.7%) Headache (70.2%) Fatigue (67.8%) Grade 3 adverse events (6.8%) Few reported cases of acute myocarditis and pericarditis (mainly in males) ²¹⁴ Children (6-11): Vaccine was generally well tolerated ²⁰⁷ Children (6month-11): Ongoing trials ²⁰²		5-year group (4%), 6-12-year group (1.2%), and 13-17-year group (7.9%) Most common systemic reactions in all three age cohorts were mild to moderate fever and cough Adverse events were mostly mild to moderate in severity ²⁰⁸	and 6-11 year group (18%) Reported at least one adverse event (27%) Most reported events were mild and moderate and only (<1%) grade 3 events Injection-site pain (13%) Fever (25%) ²⁰⁴	

	Children (Under 5): Ongoing trials ²⁰⁰ Multisystem inflammatory syndrome (causal link not yet proven) ²¹³						
Myocarditis Data	Few reported cases of acute myocarditis and pericarditis in 16-25 year olds (mainly in males) ²¹⁴ 16-29 years Incidence of 5.49 (95% CI, 3.59-7.39) per 100,00 vaccinated ¹⁹⁴ Male patients (16-29 years) Incidence of 10.69 (95% CI, 6.93-14.46) per 100,000 vaccinated ¹⁹⁴	Few reported cases of acute myocarditis in adolescents and young adults	No available data				

	Incidence of 13.6 cases (95% CI, 9.30-19.20) per 100,000 vaccinated ¹⁹⁵		HETEROLOGO	US VACCINATION			
Vaccine Schedule	BNT162b2/ChAd Ox1 Administration of ChAdOx1 as second/booster dose	ChAdOx1/mRNA- 1273 Administration of mRNA-1273 as second/booster dose	ChAdOx1/BNT16 2b2 Administration of BNT162b2 as second/booster dose	Not Applicable (one dose schedule) For more information refer to booster section	BBIBP/BNT162b2	CoronaVac/ChAd Ox1 Press releases have confirmed that Thailand will use the AstraZeneca vaccine as the second dose for individuals whose first dose was Sinovacxxx CoronaVac/Conv idecia	Ongoing trial ²¹⁵ (Com-Cov2) ^{xxvi}

xxvi Comparing COVID-19 Vaccine Schedule Combinations. *University of Oxford*. https://comcovstudy.org.uk/about-com-cov2

xxv Malaysia to stop using Sinovac vaccine after supply ends - minister. *Reuters* [press release]. https://www.reuters.com/world/asia-pacific/malaysia-stop-using-sinovac-vaccine-after-supply-ends-minister-2021-07-15/

Immunogenicity	GMCs of SARS-CoV-2 anti-spike IgG at 28 days post booster: Heterologous (7133 ELU/mL, CI 6415-7932) vs. Homologous (14080 ELU/mL, CI 12491-15871) ²¹⁶ . SFC frequency (Tocell ELISpot): Heterologous (99 SFC/10 ⁶ PBMCs) vs. Homologous (80 SFC/10 ⁶ PBMCs) ²¹⁶ .	*Spike-specific IgG antibodies: Heterologous (3602 BAU/mL) vs. Homologous (4189 BAU/mL) ⁴⁸ *Neutralizing antibodies: Heterlogous (100%) vs. Homologous (100%) ²¹⁷ . *Results based on immunosuppressed population	RBD antibody titres: Heterologous (7756.68 BAU/mL, CI 7371.53-8161.96) vs. Homologous (99.84 BAU/mL, CI 76.93-129.59) at day 14 ²¹⁸ . IgG antibody titres: Heterologous (3684 BAU/mL) vs. Homologous (101.2 BAU/mL) at day 14 ²¹⁸ . Neutralizing antibodies: Heterologous (100%) at day 14 vs. Homologous (30%) at day 14 ²¹⁸ . Heterologous (30%) at day 14 ²¹⁸ .	Not Applicable (one dose schedule) For more information refer to booster section	Unknown (on- going clinical trial) ⁴⁹	CoronaVac/ChAd Ox1: Anti-S Antibodies: Heterologous (797 U/mL; 95% CI, 598.7-1062) vs. Homologous CoronaVac (94.4 U/mL; 95% CI: 76.1-122.1) vs. Homolougous ChAdOx1 (818 U/mL; 95% CI: 662.5-1010) ²²⁰ CoronaVac/Conv idecia Neutralizing antibodies: Heterologous 54.4 GMT (95% CI, 37.9-78) vs. Homologous CoronaVac 12.8 GMT (95% CI, 9.3-17.5) ²²¹	No available data Ongoing trial ²¹⁵
----------------	--	--	---	---	--	--	--

			Homologous (BNT162b2/BNT1 62b2) (median 62%) ²¹⁹				
Immunogenicity against variants	No available data	No available data	Neutralizing Antibodies for Alpha, Beta, Gamma, and Delta: Heterologous 2.3-fold to 3.6- fold higher neutralizing antibodies than homologous ²¹⁹	No available data	No available data	No available data	No available data
Reactogenicity	Observed increase in systemic reactogenicity after boost in heterologous schedules in comparison with homologous schedules ²¹⁶ Adverse events in heterologous: Adverse events (90) Grade 1 (54.4%)	*Adverse events in heterologous and homologous vaccination groups were very similar ²¹⁷ . *Majority of adverse events self-reported were Pain at injection site, Swelling at injection site, Fever, Headaches, Fatigue, Chills, GI	Adverse events in heterologous: Headache (44%), Myalgia (43%), Malaise (42%), Fever (2%), Injection site pain (88%), Induration (35%), Erythema (31%) ²¹⁸ . Severity of adverse events in heterologous:	Not Applicable (one dose schedule) For more information refer to booster section	Unknown (on- going clinical trial) ²²²	CoronaVac/ChAd Ox1: Unknown CoronaVac/Conv idecia: Convidecia recipients reported more adverse reactions and reported higher occurrence of solicited injection- site pain) ²²¹	No available data Ongoing trial ²¹⁵

	Grade 2 (37.8%) Grade 3 (7.8%) Grade 4 (0%) Arthralgia, Migraine, Back Pain ²¹⁶ . Adverse events in homologous: Adverse events (81) Grade 1 (59.3%) Grade 2 (39.5%) Grade 3 (1.2%) Grade 4 (0%) ²¹⁶ .	effects, Myalgia, Arthralgia ²¹⁷ . *Results based on immunosuppressed population	Mild (68%) , Moderate (30%) , Severe (2%) ²¹⁸ .				
	•		BOOSTE	R DOSES			
Vaccine Schedule	BNT162b2/BNT16 2b2	mRNA- 1273/mRNA-1273	ChAdOx1/ChAdO X1	Ad26.CoV.2.S/ Ad26.CoV.2.S	SinoPharm/Sino Pharm	CoronaVac/Coro naVac	NVX- CoV2373/NVX- CoV2373
Approved Administration	Israel: 12-year-old and over can received homologous booster shot 5 months after full jabxxvii	Phase II booster trial of three booster doses are ongoing ²²³ Moderna sought FDA approval of	Preliminary results on tolerability and immunogenicity of third dose of ChAdOx1 vaccines showed strong boost to the	Johnson & Johnson has said it will submit all of their new data to the FDA for potential consideration for adding a booster	UAE: Offering booster doses of Pfizer and Sinopharm to people who received full Sinopharm jab ≥6 months ago	Turkey and the United Arab Emirates began homologous booster shots	Ongoing phase II trials ²²⁵ Results below are based on ongoing phase II trial

xxvii Israel offers COVID-19 booster to all vaccinated people. *Reuters* [press release]. https://www.reuters.com/world/middle-east/israel-offers-covid-19-booster-shots-all-vaccinated-people-2021-08-29/

	United States: Starting September, adults who received mRNA vaccine 8 months ago are eligible for booster Europe: Starting in fall, most European countries are planning on rolling out booster shots to immunocompromi sed and elder populationsxxxiii	its COVID-19 vaccine booster*xix <u>United States:</u> Starting September, adults who received mRNA vaccine 8 months ago are eligible for booster.	immune response ²²⁴	dose and consideration to authorize two-dose regimenxxx		Indonesia and Thailand are considering giving homologous booster shot to HCWxxxi	
Time-to-booster dose	6 months to 8 months after initial two-dose regimen	6 months to 8 months after initial two-dose regimen	6-9 months after initial two-dose regimen	6 months after one dose regimen ⁶¹	6 months after initial two-dose regimen	6 months to 12 months After primary vaccination	6 months after initial two-dose regimen (189 days) ²²⁵

xxviii A country-by-country guide to coronavirus vaccine booster plans. *POLITICO* [press reléase]. https://www.politico.eu/article/vaccine-booster-coronavirus-covid-19-europe-delta-varian-who/

xxxi Indonesia and Thailand consider booster shots amid doubts over Sinovac vaccine. Reuters [press release]. https://www.reuters.com/world/china/indonesia-thailand-consider-booster-shots-amid-doubts-over-sinovac-vaccine-2021-07-08/

xxix Moderna seeks U.S. authorization for COVID-19 vaccine booster. *Reuters* [press release]. https://www.reuters.com/business/healthcare-pharmaceuticals/moderna-submits-initial-data-covid-19-vaccine-booster-us-fda-2021-09-01/

xxx Two dose version of Johnson & Johnson shot 94% effective against Covid-19, study finds. *CNN*. https://edition.cnn.com/2021/09/21/health/johnson-vaccine-two-doses-booster/index.html

	Israel offers up to 5 months after initial two-dose regimen					8 months after the primary vaccination to healthy adults ≥60 years	
Efficacy	95.6% against disease during Delta prevalent period ²²⁶	No available data	No available data				
Effectiveness	Overall: 93% (95% CI: 88- 97) against admission to hospital 92% (95% CI: 82- 97) against severe disease 81% (95% CI: 59- 97) against COVID-19-related death ²²⁷ 16-39 years old: 70% (95% CI: -70- 100) against admission to hospital ²²⁷	No available data	No available data				

	92% (95% CI: 83-97) against admission to hospital 94% (95% CI: 85-97) against severe COVID-19 disease ²²⁷ ≥70 years old: 93% (95% CI: 87-97) against admission to hospital 92% (95% CI: 83-98) against severe COVID-19 disease ²²⁷						
Immunogenicity	Neutralizing titers: Elicits >5-8 more for wild type after 6 months after 2 nd dose ²²⁸	Booster doses (mRNA1273 or mRNA1273.351) increased neutralizing antibody titers against wild- type ²²⁹	Antibody Levels: Higher levels after third dose (tlgG EU 3746; IQR: 2047-6420) 224 Spike Cellular Immune Response: Increased from 200 SFUx106 PBMC (IQR, 127-	5X10 ¹⁰ vp booster dose elicited 9- fold increase at day 7 compared to first dose after 29 days in 18-55- year-olds ⁶¹ 1.25X10 ¹⁰ vp booster dose elicited 6-7.7-fold increase at day 28	Ongoing trial ²²²	Neutralizing Antibodies: 60% higher NAbs activity against wild-type compared to 2- doses ⁶⁵ Anti-S IgG and NAbs: 20-fold increase 4 weeks post	Anti-spike IgG: Increase of 4.6- fold compared to peak response after 2 nd dose (Day 217 GMEU = 200408; 95% CI: 159796- 251342) ²²⁵

			389) after the second dose to 399 SFUx10 ⁶ PBMC (IQR, 314-662) after the third one ²²⁴	compared to first dose after 29 days in 18-55 and ≥65-year-old ⁶¹		booster vaccination NAbs were maintained 60 to 180 days post booster ⁶⁵	Wild-type Neutralizing Response: Increase of 4.3- fold compared to peak response after 2nd dose (IC50 = 6231; 95% CI: 4738-8195) 225 Older Participants (60- 84): 5.4-fold increase in antibody response225 Younger Participants (18- 59): 3.7-fold increase in antibody response225
Immunogenicity against variants	Beta (B.1.351): Elicits 15-21 more neutralizing titers for Beta variant after 6 months after 2 nd dose ²²⁸	Preliminary results of booster doses of mRNA-1273 vaccine show robust antibody response against Delta variant ²²³	Third dose provided higher antibody titters against Alpha, Beta, and Delta variants ²²⁴	No available data	Ongoing trial ²²²	Beta (B.1.351): 3.0-fold decrease in neutralizing antibodies compared to wild type ⁶⁵	High levels of functional antibodies against Alpha (B.1.1.7), Beta (B.1.351), and

	Delta (B.1.671.2): >5-fold increase in neutralizing titers against Delta compared to dose 2 titers in 18–55- year-olds >11-fold increase in neutralizing titers against Delta compared to dose 2 titers in 65–85- year-olds ²²⁸					Gamma (P.1): 3.1-fold decrease in neutralizing antibodies compared to wild type ⁶⁵ Delta (B.1.671.2): 2.3-fold decrease in neutralizing antibodies compared to wild type 2.5-fold higher neutralizing potency than 2-dose vaccination ⁶⁵	Delta (B.1.671.2) ²²⁵ <u>Delta</u> (B.1.671.2): Increase of 6.6-fold in antibody response compared to Delta response observed with primary vaccination ²²⁵
Reactogenicity	Preliminary results show consistent tolerability ²²⁸	Similar safety and tolerability compared to second dose ²²³ <u>Common solicited local adverse events:</u> Injection-site pain (68.4% for mRNA-1273.351, 90% for mRNA-1273) fatigue (36.8% for mRNA-1273.351,	Lower reactogenicity after third dose compared to first dose ⁶⁰	No available data	Ongoing trial ²²²	The third shot is considered to be safe ⁶⁴ . <u>Common side effects:</u> Pain at the injection site. <u>Adverse events:</u> Unrelated to the vaccination	Booster dose was well tolerated Local and systemic reactogenicity increased between Dose 1, Dose 2, and Dose 3 90% of symptoms were

		70% for mRNA- 1273) headache (36.8% for mRNA1273.351, 55.0% for mRNA- 1273) myalgia (31.6% for mRNA- 1273.351, 45.0% for mRNA-1273) arthralgia (21.1% for mRNA-1273, 50.0% for mRNA- 1273) ²²⁹					rated as mild or moderate ²²⁵
Protection against COVID-19	<u>Confirmed</u> <u>Infection:</u> Youngest age group (16-29): 17.6 (95% CI, 15.6-19.9) lower rate in booster group ²³⁰ 30-39 age group: 8.8 (95% CI, 8.2- 9.5) lower rate in booster group ²³⁰ 40-49 age group:	No available information	No available information	No available information	No available information	No available information	No available information

10.4)	5% CI, 9.2-		
00051	lower rate in er group ²³⁰		
50-59 12.2 (11.4-1	age group: 95% CI, 3.1) lower a booster		
Oldes (≥60): 11.3 (10.4-1 rate ir group 12.4 (11.9-1 rate ir	t age group 95% CI, 2.3) lower booster 231 95% CI, 2.9) lower booster		
40-59	re Illness:		
10.3-4 rate ir group	95% CI, 17.0) lower 1 booster 230 population		

	19.5 (95% CI, 12.9-29.5) lower rate in booster group ²³¹ 18.7 (95% CI, 15.7-22.4) lower rate in booster group ²³⁰						
Other	Detailed report from Pfizer regarding booster doses can be found here: https://www.fda.gov/media/152161/download 14-20 days after booster, marginal effectiveness increases to 70-84% ²³²					For more detailed information regarding immunogenicity of third dose refer to studyxxxii	
			HETEROLOGOUS	BOOSTER DOSES			
Vaccine Schedule	Heterologous 1: mRNA1273/BNT1 62b2	Heterologous 1: BNT162b2/mRNA 1273	No available data	Heterologous 1: BNT162b2/Ad26. CoV.2.S	Heterologous: SinoPharm/BNT1 62b2	Heterologous 1: CoronaVac/ChAd Ox1	Heterologous: Ongoing trial of heterologous booster shot

xxxii A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. medRxiv. https://www.medrxiv.org/content/10.1101/2021.09.02.21261735v1

	Heterologous 2: Ad26.CoV.2.S/BN T162b2 *Received BNT162b2 as booster dose	Heterologous 2: Ad26.CoV.2.S/m RNA1272 *Received mRNA1273 as booster dose		Heterologous 2: mRNA1273/Ad26. CoV.2.S *Received Ad26.CoV.2 as booster dose		Heterologous 2 : CoronaVac/BNT1 62b2	using NVX- CoV2373 ^{xxxiii}
Time-to-booster dose	At least 3 months after receiving two dose regimen	At least 3 months after receiving two dose regimen	No available data	4 months after initial two-dose BNT162b2 regimen ²³³ At least 3 months after receiving two dose regimen	6 months after initial two-dose regimen	Heterologous 1: 21 to 26 days after full jab of CoronaVac Heterologous 2: 6 months after primary vaccination of CoronaVac	
Immunogenicity	Binding Antibody Responses: 2-fold or greater rise in bAb noted in 98-100% of BNT162b2 recipients ²³⁴ Neutralizing Antibody Responses:	Binding Antibody Responses: 2-fold or greater rise in bAb noted in 96-100% of mRNA1273 recipients ²³⁴ Neutralizing Antibody Responses:	No available data	Heterologous 1: 14.8 to 32.4-fold increase in neutralization titers against wild-type virus ²³³ Binding Antibody Responses (bAb): 2-fold or greater rise in bAb noted in 98-100% of	No available data	Heterologous 1: Heterologous vaccination had a 9-fold greater GMT (7,947 U/mL) than fully patients fully vaccinated with AZD1222 and the highest antibody response, IgA, and neutralizing	

xxxiii COV-Boost Evaluating COVID-19 Vaccine Boosters. *University of Southampton & NHS*. https://www.covboost.org.uk/home

341.3-677.9 IU50/mL 15 days after booster with BNT162b2 ²³⁴ BNT162b2 ²³⁴ IU50/mL 15 days after booster with Ad26.COV2.S. recipients ²³⁴ other groups ²³⁵ Neutralizing Antibody Median values of
--

Immunogenicity against variants	Binding Antibody Responses: Baseline bAb levels for Delta were 34-45% lower compared to Wa-1 strain ²³⁴ Following boost, bAB levels for Delta were 15- 36% lower compared to Wa-1 strain ²³⁴	Binding Antibody Responses: Baseline bAb levels for Delta were 34-45% lower compared to Wa-1 strain ²³⁴ Following boost, bAB levels for Delta were 15- 36% lower compared to Wa-1 strain ²³⁴ Neutralizing Antibody Responses: Delta and Beta variants were only available in those boosted with mRNA-1273 ²³⁴	No available data	Heterologous 1: 10.9 to 21.2-fold increase in pseudo virus neutralization assay (one volunteer did not have any against B.1.351) 233 Binding Antibody Responses: Baseline bAb levels for Delta were 34-45% lower compared to Wa-1 strain ²³⁴ Following boost, bAB levels for Delta were 15-36% lower compared to Wa-1 strain ²³⁴	No available data	Heterologous 1: Neutralizing activity against the wild type and variant strains showed higher neutralizing activity in the following order: wild type > B.1.617.2 > B.1.1.7 > B.1.351 ²³⁵	
Reactogenicity	Adverse Events: 72-92% participants reported local pain or tenderness ²³⁴	Adverse Events: 75-86% participants reported local pain or tenderness ²³⁴	No available data	Adverse Events: 71-84% participants reported local pain or tenderness ²³⁴	No available data	Similar results to homologous booster administration	

	Malaise, myalgias, and headaches were commonly reported ²³⁴ 14.4% of the participants reported unsolicited adverse events ²³⁴	Malaise, myalgias, and headaches were commonly reported ²³⁴ 15.6% of participants reported unsolicited	Malaise, myalgias, and headaches were commonly reported ²³⁴ 12% of participants reported unsolicited adverse events ²³⁴		
Other		adverse events ²³⁴		Ongoing clinical trial examining the immunogenicity and safety of a third dose vaccination with ChAdOx1 or BNT162b2 vaccine among adults who received full jab of CoronaVacxxxiv	

xxxiv Third Dose Vaccination with AstraZeneca or Pfizer COVID-19 Vaccine Among Adults Received Sinovac COVID-19 Vaccine. *ClinicalTrials.gov.* https://clinicaltrials.gov/ct2/show/NCT05049226

ANNEXES

	BNT162b2/ COMIRNATY (Pfizer- BioNTech, USA)	Spikevax/ Moderna COVID- 19 Vaccine/ mRNA-1273 (Moderna, USA)	Vaxzevria/ ChAdOx1 nCoV- 19/ AZD1222/ Covishield (AstraZeneca/Ox ford, UK, India)	Janssen COVID- 19 vaccine/Johnson & Johnson (Janssen, USA)	Sinopharm/BBIB P-CorV, China	Sinovac CoronaVac, China	Novavax/ NVX-CoV2373
			FURTHER	INFORMATION			
Storage conditions	2°C to 8 °C (for 1 month)	2°C to 8 °C (for 1 month)	2°C until 8 °C	2°C to 8 °C (for 3 months)	2°C until 8 °C	2°C until 8 °C	2°C to 8 °C
Approving authorities	FDA (11.12.20)****; EMA (21.12.20); WHO EUL (31.12.20); and list of countries (including Switzerland –	FDA (18.12.20); EMA (06.01.21); WHO EUL (30.04.21); and list of 51 countries (including Switzerland – approved 12.01.21)	FDA (awaiting on approval); EMA (29.01.21); WHO EUL (15.02.21); and list of 121 countries (Switzerland	FDA (27.02.21); EMA (11.03.21), WHO EUL (12.03.21), and list of 59 countries (including Switzerland – approved 22.03.21)	WHO EUL (07.05.21); and list of 55 countries (e.g., Argentina, Bahrain, Brazil, China, Indonesia, United Arab Emirates, Zimbabwe)	WHO EUL (01.06.21), and list of 33 countries (e.g., Albania, Chile, Egypt, Hong Kong, Malaysia, Tunisia, Turkey, Ukraine)	Waiting on approval (Not-yet-approved by countries or WHO for emergency use)

xxxv Pfizer-BioNTech's Comirnaty Vaccine received full FDA approval on 23 August 2021 for people age 16 and above, moving it beyond emergency use status. https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine

	oroved on 12.20)		awaiting on approval)	IOGENICITY		Single dage (> 4	
Immunogenicity 65- GM 1.1 the con	e GMT of the envalescent rum ²³⁷ . -85 years: AT ranged from to 2.2 times of GMT of the envalescent rum ²³⁷ .	14 days after second dose: 18-55 years: PRNT ₈₀ GMT 654.3 (95% CI, 460.1-930.5) ²³⁸ . 56-70 years: PRNT ₈₀ GMT 878 (95% CI, 516- 1494) ²³⁹ . ≥71 years: PRNT ₈₀ GMT 317 (95% CI, 181- 557) ²³⁹ .	28 days after second dose median antibody titres: 18–55 years: 20,713 AU/mL [IQR 13,898 - 33,550] ²⁴⁰ 56–69 years: 16,170 AU/mL [IQR 10,233 - 40,353] ²⁴⁰ . ≥70 years: 17,561 AU/mL [IQR 9,705 - 37,796] ²⁴⁰ .	29 days after vaccination: 18-55 years: GMC 586 (95% CI, 445-771); GMT 224 (95% CI, 168-298) ²⁴¹ . ≥65 years: GMC 312 (95% CI, 246-396); GMT 212 (95% CI, 163-266) ²⁴¹ . 57 days after vaccination: 18-55 years: 754 (95% CI, 592-961); GMT 288 (95% CI, 221-376) ²⁴¹ .	14 days after second dose: 18-55 years: GMT 211.2 (95% CI, 158.9-280.6) ²⁴² . ≥60 years: GMT 131.5 (95% CI, 108.2-159.7) ²⁴² .	Single dose (≥4 weeks): 37.7±57.08 IU/mI (min: 0, max: 317.25); 57.02% of participants did not develop sufficient antibody titres (<25.6 IU ml) Two doses (≥4 weeks): 194.61±174.88 IU/mI (min: 0, max: 677.82); 11.48% of participants did not develop sufficient antibody titres (<25.6 IU ml) ²⁴³ . 2 weeks after second dose:	

						4 weeks after second dose: 94.8 BAU/ mL ²⁴⁴ 8-12 weeks after second dose: 34.7 BAU/ mL ²⁴⁴	
Immunogenicity against the Mu variant	6.8-fold decrease in neutralizing titres when compared to convalescent sera ²⁴⁵	Neutralizing titre similar to that of BNT162b2 sera ²⁴⁵	Neutralizing titre similar to that of BNT162b2 sera ²⁴⁵				
			EF	FFICACY			
Single dosexxxvi	52% (95% CI, 29.5 to 68.4; starting at 12 days) or 82.2% (75.1 to 87.3; starting at ≥14 days) ²⁴⁶ .	95.2% (95% CI, 91.2.8 to 97.4; starting at >14 days) ⁷⁶ .	72.8% (starting at 22 days up to 60 days) ²⁴⁸ . 88% (95% CI, 75-94) ²⁴⁷ .xxxvii	Single dose vaccine	Unknown	35.1% (95% CI, -6.6 to -60.5) [conducted in a setting with high P.1 transmission] ²⁴⁹ .	83.4% (95% CI, 73.6-89.5) starting at ≥14 days ⁸⁴

xxxvi Against SARS-COV-2 infection

xxxvii Conducted between 8 December 2020 and 8 February 2021. Study sample = ≤1 million participants.

Two doses*xxviii	91% (95% CI, 85-94) ²⁴⁷ . 95.0% (95% CI, 90.3-97.6) starting at ≥7 days in population without prior SARS-CoV-2 infection ⁹⁰ 94.6% (95% CI, 89.9-97.3) starting at ≥7 days in population with or without prior infection ⁹⁰	94.1% (95% CI, 89.3-96.8) after median follow-up of less than 63 days ⁷⁶ 93.2% (95% CI, 91.0-94.8) ²⁵⁰ Against severe disease: 98.2% (95% CI, 92.8-99.6) ²⁵⁰	63.1% (95% CI, 51.8-71.7) starting at ≥14 days for two standard doses ²⁴⁸ 80.7% (95% CI, 62.1-90.2) starting at ≥14 days for first low dose and standard second dose ²⁴⁸ 66.7% (95% CI, 57.4-74.0) starting at ≥14 days for pooled analysis efficacy ²⁴⁸	66.9% (95% CI 59.0-73.4) after 14 days and 66.1% (95% CI 55.0-89.1) after 28 days for VE against moderate- severe-critical COVID-19 ²⁵¹ 76.7% (95% CI 54.6 to 89.1) after 14 days and 85.4% (95% CI 54.2 to 96.9) after 28 days for VE against severe- critical COVID- 19 ²⁵¹	After 14 days, efficacy against symptomatic cases was 72.8% (95% CI 58.1-82.4; in WIV04 vaccine) or 78.1% (95% CI 64.8 to 86.3; in HBO2 vaccine). ¹⁶²	After 14 days, efficacy against symptomatic cases was 50.7% (95% CI 35.9 to 0-62.0).82 99.17% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ²⁵² .	89.7% (95% CI, 80.2-94.6) starting at ≥7 days ⁸⁴ 90.4% (95% CI, 82.9-94.6) ²⁵³ 100% (95% CI, 87-100) against moderate-to- severe COVID- 19 ²⁵³ 100% (95% CI, 34.6-100) against severe COVID- 19 ²⁵³
Against asymptomatic infection	90% (starting at 14 days) regardless of symptom status ²⁵⁴	63.0% (95% CI, 56.6-68.5) ²⁵⁰	Statistically non- significant reduction of 22.2% (95% CI - 9.9 to 45.0) for asymptomatic cases	At day 71, vaccine efficacy against asymptomatic infections was 65.5% (95% CI 39.9 to 81.1) ²⁵¹ .	Efficacy against symptomatic and asymptomatic cases was 64% (95% CI 48.8 to 74.7; in WIV04 vaccine) or 73.5%	Unknown	Unknown

xxxviii Against SARS-CoV-2 infection.

			EFFICACY A	GAINST VARIANTS	(95% CI 60.6 to 82.2; in HBO2 vaccine) ¹⁶² .		
Alpha (B.1.1.7)	Two doses of the vaccine effectively neutralize the B.1.1.7 variant and the D614G substitution ²⁵⁵ .	NAbs remained high and consistent with titres of the wildtype for the B.1.1.7 variant ²⁵⁶ .	70.4% (95% CI, 43.6-84.5) against symptomatic infection with alpha variant (B.1.1.7); 28.9% (95% CI, -77.1 to 71.4) against asymptomatic infection with B.1.1.7 ⁷² .	3.6-fold reduction in neutralization capacity when compared to wild-type.	Demonstrated reduced neutralizing capacity. However, there were no differences in the NAbs titres against B.1.351 in vaccinated individuals vs. those naturally infected, suggesting the vaccine has a similar level of protection against infection as natural infections ²⁵⁷ .	reduction in neutralization capacity when compared to natural infection sera ²⁵² . 85.83% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ²⁵² . Neutralization decreased by 4.1-fold when compared to wild-type ²⁵⁸ .	Two dose efficacy against the B.1.1.7 variant 86.3% (95% CI, 71.3-93.5) ⁸⁴ 93.6% (95% CI, 81.7-97.8) against the Alpha variant ²⁵³
Beta (B.1.351)	Neutralization was diminished by a factor of 5. Despite this, the	NAbs were 6-fold lower. Nevertheless, NAbs were still	Two doses of the vaccine had no efficacy against the B.1.351 (VE =	Efficacy against moderate-severe- critical Covid-19 due to the variant		NT _{GM} 35.03 (95% CI, 27.46-44.68); 8.75-fold reduction in	51.0% (95% CI, - 0.6-76.2) efficacy against B.1.351 variant ²⁶⁴

	BNT162b2 mRNA vaccine still provides some protection against B.1.351 ²⁵⁹ 100% (95% CI, 53.5-100) ²⁶⁰ .	found to be protective ²⁵⁶ .	21.9%; 95% CI, - 49.9 to 59.8) ²⁶¹ .	was 52.0% (>14 days) and 64.0% (>28 days). Efficacy against severe-critical COVID-19 was 73.1% (>14 days) and 81.7% (>28 days) ²⁵¹ . Demonstrated 3.6-fold reduction in neutralization sensitivity ²⁶² . Neutralization titres were decreased by 6.7-fold ²⁶³ .	No published data	neutralization capacity when compared to natural infection sera ²⁵² . 82.5% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ²⁵² .	
Gamma (P.1)	Single dose: ≥21 days: 83% against hospitalization and death ²⁶⁵ . Two doses: ≥14 days: 98% against hospitalization and death ²⁶⁵ .	3.2-fold reduction in neutralization capacity when compared to wild-type ²⁶⁶ .	Single dose: ≥21 days: 94% against hospitalization and death ²⁶⁵ . Two doses: 64% (95% CI, -2-87) [n=18] ²⁶⁷ Efficacy against Zeta (P.2) [2 doses]: 69% (95% CI, 55-78) ²⁶⁷	Demonstrated 3.4-fold reduction in neutralization sensitivity ²⁶² .	No published data	49.6% against P.1 (>14 days after 1st dose) ²⁴⁹ . Neutralization decreased by 7.5-fold when compared to wild-type ²⁵⁸ .	No available data

Delta (1.671.2)	Reduced NAb activity relative to B.1.1.7 strain ²⁶⁸ .	2.1-fold reduction in neutralization capacity when compared to wild-type ²⁶⁶ .	Single dose: ≥21 days: 90% against hospitalization and death ²⁶⁵ .	Demonstrated 1.6-fold reduction in neutralization sensitivity ²⁶² . Neutralization titres were decreased by 5.4- fold ²⁶³ .	Demonstrated reduced neutralizing capacity. However, there were no differences in the NAbs titres against B.1.617.2 in vaccinated individuals vs. those naturally infected, suggesting the vaccine has a similar level of protection against infection as natural infections ²⁵⁷ .	NT _{GM} 24.48 (95% CI,19.2-31.2) ²⁵² . 69.17% of NAb titres were above or equal to the Nab positivity cutoff (20 units) against wild-type ²⁵² .	No available data
-----------------	--	--	--	--	---	--	-------------------

PHASE III TRIALS RESULTS****

Phase III trials were conducted between 27 July and 14 November 2020 for BNT162b2/ COMIRNATY, 27 July and 23 October 2020 for Spikevax/ Moderna, 23 April and 6 December 2020 for Vaxzevria/ ChAdOx1 nCoV-19/ AZD1222/ Covishield, 21 September 2020 and 22 January 2021 for Janssen Covid-19 vaccine/ Johnson & Johnson, 16 July and 20 December 2020 for Sinopharm/ BBIB-CorV, 21 July and 16 December 2020 for the Sinovac/ CoronaVac vaccine, and 28 September 2020 and 28 November 2020 for the Novavax vaccine. All trials were conducted prior to the transmission of the more contagious variant strains, particularly the delta variant (B.1.617.2). Studies are currently ongoing to determine the effectiveness of the vaccines against the delta variant.

Number of participants (vaccine/ placebo) Total COVID-19 cases (vaccine/ control)	43,448 (21,720/ 21,728) ⁹⁰ 170(8/162) ⁹⁰	30,420 (15,210/15,210) ⁷⁶ 196 (11/185) ⁷⁶	17,178 (8597/8581) ²⁴⁸ 332 (84/248) ²⁴⁸	39,321 (19,630/19,691) ²⁵¹ 464 (116/348) ²⁵¹	26,917 (13,459/13458); or 26,914 (13,465/13,458) ¹⁶² 121(26/95) or 116(21/95) ¹⁶²	9,823 (4,953/4,870) ⁸² 253(85/168) ⁸²	14,039 (7,020/7,019) ⁸⁴ 106(10/96) ⁸⁴
Efficacy estimates in Phase III trials	Starting from 7 days after 2nd dose: 95.0% (95% CI, 90.3 to 97.6) in population without prior SARS-CoV-2 infection. Efficacy of 94.6% (95% CI, 89.9 to 97.3) in population with or without prior infection. 100% among adolescents (12-15 years old) ⁹⁰ .	After a median follow-up of less than 63 days: Efficacy of 94.1% (95% CI, 89.3 to 96.8; P<0.001). 100% among adolescents (12 to <18 years old) ⁷⁶ .	Two standard doses: efficacy was 63-1% (95% CI 51.8 to 71.7; ≥14 days) while those with first low dose and standard 2nd dose the efficacy was 80.7% (95% CI 62.1 to 90.2). Pooled analysis efficacy was 66.7% (95% CI 57.4 to 74.0). For any nucleic acid amplification test-positive swab: efficacy was 54.1% (95% CI 44.7 to 61.9) ²⁴⁸ .	VE against moderate-severe-critical Covid-19 was 66.9% (95% CI 59.0 to 73.4) after 14 days post vaccine administration, and 66.1% (95% CI 55.0 to 89.1) after 28 days. VE against severe-critical COVID-19 cases was 76.7% (95% CI 54.6 to 89.1) after 14 days and 85.4% (95% CI 54.2 to 96.9) after 28 days ²⁵¹ .	After 14 days, efficacy against symptomatic cases was 72.8% (95% CI 58.1 to 82.4; in WIV04 vaccine) or 78.1% (95% CI 64.8 to 86.3; in HBO2 vaccine) ¹⁶² .	After 14 days, efficacy against symptomatic cases was 50.7% (95% CI 35.9 to 0-62.0).82	83.4% (95% CI, 73.6-89.5) starting at ≥14 days after first dose ⁸⁴ 89.7% (95% CI, 80.2-94.6) starting at ≥7 days after second dose ⁸⁴
Efficacy against hospitalization and death	100% (after 7 days) ⁹⁰	100% (≥14 days) ⁷⁶	100% (after 21 days) ²⁴⁸	76.7% (≥14 days) or 85.4% (≥28 days) ²⁵¹	100% (>14 days) ¹⁶²	100% (>14 days) ⁸²	100% (after 7 days) ⁸⁴ .

Phase III clinical trial serious adverse events	Serious adverse events were observed in a similar proportion of vaccine (0.6%) and placebo (0.5%) recipients. These events also occur at a similar frequency within the general population ^{73,269} .	The frequency of grade 3 adverse events was similar in both the vaccine (1.5%) and placebo groups (1.3). Serious adverse events were observed in a similar proportion in both groups (0.6%). 3 Bell's Palsy cases occurred in the vaccine group and one Bell's Palsy case occurred in the placebo group ⁷⁶ .	Serious adverse events were balanced across the study arms. 79 cases occurred in the vaccine group and 89 cases in the placebo group – 3 cases were considered related to the experimental or control vaccine (out of 11 636 vaccine recipients): transverse myelitis, haemolytic anaemia and a case of fever higher than 40°C 78.	Serious adverse events were reported in 0.4% of vaccine recipients and 0.4% of placebo recipients. Seven of the serious adverse events were considered to be related to the vaccine: Guillain-Barré syndrome (1), pericarditis (1), brachial radiculitis (1), hypersensitivity (1), Bell's Palsy (2), & severe generalized weakness, fever & headache (1) ²⁵¹ .	A cross-sectional survey collected data on adverse events following vaccination in the UAE - none of the symptoms were of serious nature or required hospitalization ⁸¹ .	Overall incidence of serious adverse events was 0.5% (31 in placebo group and 33 in vaccine group). All adverse events were determined to be unrelated to the vaccine ⁸² .	Phase II: Nine serious adverse events were reported, only one of which was assessed as related to the vaccine: acute colitis ²⁷⁰ .
Comments	Specific populations were excluded (HIV and immunocompromi	Calculation of efficacy were not based on the total number of		2-DOSE EFFICACY Efficacy against symptomatic (moderate to severe/ critical)	Only 2 severe cases occurred in the control group and none in the vaccine group		Novavax is currently awaiting FDA, EMA, and WHO EUL approval.

Literature screening report: COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (Updated Gabriela Guizzo Dri

sed patients, and pregnant women). confirmed	SARS-CoV-2 infection 94% (95% CI, 58-100) in the US. 75% (95% CI, 55-87) globally. ¹¹ Efficacy against severe/ critical SARS-CoV-2 infection 100% (95% CI, 33-100) ¹¹	(very few cases to get a reliable estimate).	Upcoming information regarding results of clinical trials or approval will be updated in upcoming reports
---	--	--	---

VACCINE PRODUCTION SITES										
	BNT162b2/ COMIRNATY	Spikevax/ Moderna COVID- 19 Vaccine/	Vaxzevria/ ChAdOx1 nCoV- 19/ AZD1222/ Covishield	Janssen COVID- 19 vaccine/Johnson & Johnson	Sinopharm/BBIB P-CorV, China ^{xliv}	Sinovac CoronaVac, China ^{xlv}	Novavax/ NVX- CoV2373			

xiv WHO recommendation of Sinovac COVID-19 vaccine (Vero Cell [Inactivated]) - CoronaVac. WHO. https://extranet.who.int/pqweb/vaccines/who-recommendation-sinovac-covid-19-vaccine-vero-cell-inactivated-coronavac

xliv WHO recommendation COVID-19 vaccine BIBP/Sinopharm. WHO. https://extranet.who.int/pgweb/vaccines/who-recommendation-covid-19-vaccine-bibp

	(Pfizer- BioNTech, USA) ^{xl}	mRNA-1273 (Moderna, USA) ^{xli}	(AstraZeneca/Oxf ord, UK, India) ^{xlii}	(Janssen, USA) ^{xliii}			
EUL holder	BioNTech Manufacturing GmbH (Germany)	ModernaTX, Inc. (USA) ¹ Moderna Biotech (Spain) ²	AstraZeneca AB (Sweden)	Janssen-Cilag International NV (Belgium)	Beijing Institute of Biological Products Co., Ltd. (BIBP) (China)	Sinovac Life Sciences Co., Ltd. (China)	Novavax (USA)
Production sites (Drug substance)	BioNTech Manufacturing GmbH (Mainz, Germany) BioNTech Manufacturing Marburg (Marburg, Germany)	Lonza Biologics, Inc., (USA) ¹ Moderna TX, Inc. (USA) ¹ Lonza AG (Switzerland) ²	Henogen S.A (Belgium) Catalent Maryland, Inc. (USA) Oxford Biomedica (UK) Ltd. (United Kingdom)	Janssen Vaccines & Prevention B.V. (The Netherlands) Janssen Biologics B.V. (The Netherlands) Emergent Manufacturing	Beijing Institute of Biological Products Co., Ltd. (China)	Sinovac Life Sciences Co., Ltd. (China)	Novavax (Bohumil, Czech Republic)

xl WHO recommendation BioNTech Tozinameran – COVID-19 mRNA vaccine (nucleoside modified) – COMIRNATY. WHO. https://extranet.who.int/pgweb/vaccines/who-recommendation-covid-19mrna-vaccine-nucleoside-modified-comirnaty

xiiii WHO recommendation Janssen-Cilag International NV (Belgium) COVID-19 Vaccine (Ad26.COV2-S [recombinant]). WHO. https://extranet.who.int/pgweb/vaccines/who-recommendation-janssencilag-international-nv-belgium-covid-19-vaccine-ad26cov2-s

xii 1. WHO recommendation ModernaTX, Inc/USFDA COVID-19 mRNA vaccine (nucleoside modified). WHO. https://extranet.who.int/pgweb/vaccines/who-recommendation-modernatx-incusfdacovid-19-mrna-vaccine-nucleoside-modified

^{2.} WHO recommendation Moderna COVID-19 mRNA Vaccine (nucleoside modified). WHO. https://extranet.who.int/pgweb/vaccines/covid-19-mrna-vaccine-nucleoside-modified

xiii WHO recommendation AstraZeneca/ EU approved sites COVID-19 vaccine (ChAdOx1-S) [recombinant]. WHO. https://extranet.who.int/pgweb/vaccines/covid-19-vaccine-chadox1-s-recombinant-0

	Rentschler Biopharma SE (Laupheim, Germany) Wyeth BioPharma Division of Wyeth Pharmaceuticals (USA)		SK Bioscience (Republic of Korea) Halix B.V (Netherlands) WuXi Biologics (China)	Operations Baltimore LLC (USA)			
Production sites (Drug product)	Baxter Oncology GmbH (Halle/ Westfallen, Germany) BioNTech Manufacturing GmbH (Mainz, Germany) Pfizer Manufacturing Belgium NV (Belgium) Novartis Pharma Stein AG (Switzerland) Mibe GmbH Arzneimittel (Brehna, Germany)	Baxter Pharmaceutical Solutions, LLC. (USA) ¹ Catalent Indiana, LLC. (USA) ¹ Rovi Pharma Industrial Services, S.A. (Spain) ²	Catalent Anagni (Italy) CP Pharmaceuticals (United Kingdom) IDT Biologika (Germany) SK Bioscience (Republic of Korea) Universal Farma, S.L. ("Chemo") (Spain) Amylin Ohio LLC (USA)	Janssen Biologics B.V. (The Netherlands) Janssen Pharmaceutica NV (Belgium) Aspen SVP. (South Africa) Catalent Indiana LLC. (USA) Grand River Aseptic Manufacturing Inc. (USA) Catalent Anagni S.R.L. (Italy)	Beijing Institute of Biological Products Co., Ltd. (China)	Sinovac Life Sciences Co., Ltd. (China)	Novavax (Bohumil, Czech Republic)

Literature screening report: COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (Updated Gabriela Guizzo Dri

Diluent suppliers	Pfizer Perth, Australia	-		-
Suppliers	Fresenius Kabi, USA			

References

- European Medicines Agency. Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. European Medicines Agency. https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters. Published 2021. Updated 4 October. Accessed 5 October, 2021.
- Hall VJ, Foulkes S, Saei A, et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). SSRN - Preprint. 2021.https://doi.org/10.2139/ssrn.3790399
- 3. Pilishvili T, Gierke R, Fleming-Dutra KE, et al. Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. *N Engl J Med.* 2021.https://doi.org/10.1056/NEJMoa2106599
- 4. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMoa2114114
- 5. Public Health England. *Public Health England vaccine effectiveness report.* 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/989360/PHE_COVID-19_vaccine_effectiveness_report_March_2021_v2.pdf
- 6. Thomson EC, Rosen LE, Shepherd JG, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. *Cell.* 2021;184(5):1171-1187.e1120.https://doi.org/10.1016/j.cell.2021.01.037
- 7. Chung H, He S, Nasreen S, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. *BMJ*. 2021;374:n1943.https://doi.org/10.1136/bmj.n1943
- 8. Lumley SF, Rodger G, Constantinides B, et al. An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. *Clinical infectious diseases*. 2021.https://doi.org/10.1093/cid/ciab608
- 9. Corchado-Garcia J, Puyraimond-Zemmour D, Hughes T, et al. Real-World Effectiveness of Ad26.COV2.S Adenoviral Vector Vaccine for COVID-19. SSRN Preprint. 2021.https://doi.org/10.2139/ssrn.3835737
- 10. Polinski JM, Weckstein AR, Batech M, et al. Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine. *medRxiv*. 2021:2021.2009.2010.21263385.https://doi.org/10.1101/2021.09.10.21263385
- 11. Johnson & Johnson. Johnson & Johnson Announces Real-World Evidence and Phase 3 Data Confirming Strong and Long-Lasting Protection of Single-Shot COVID-19 Vaccine in the U.S. Johnson & Johnson. https://www.jnj.com/johnson-johnson-announces-real-world-evidence-and-phase-3-data-confirming-strong-and-long-lasting-protection-of-single-shot-covid-19-vaccine-in-the-u-s. Published 2021. Updated 21 September. Accessed 21 September, 2021.
- 12. Self WH, Tenforde MW, Rhoads JP, IVY Network. Vaccines in Preventing COVID-19 Hospitalizations Among Adults Without Immunocompromising Conditions. *Morbidity & Mortality Weekly Report.* 2021.https://doi.org/10.15585/mmwr.mm7038e1

- Braeye T, Cornelissen L, Catteau L, et al. Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of Belgian contact tracing data, January-June 2021. Vaccine. 2021;39(39):5456-5460.https://doi.org/10.1016/j.vaccine.2021.08.060
- 14. Ranzani OT, Leite RdS, Castilho LD, et al. Vaccine effectiveness of Ad26.COV2.S against symptomatic COVID-19 and clinical outcomes in Brazil: a test-negative study design. *medRxiv*. 2021:2021.2010.2015.21265006.https://doi.org/10.1101/2021.10.15.21265006
- Jahromi M, Al Sheikh MH. Partial protection of Sinopharm vaccine against SARS COV2 during recent outbreak in Bahrain. *Microb Pathog*. 2021:158:105086.https://doi.org/10.1016/j.micpath.2021.105086
- Jara A, Undurraga EA, González C, et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. New England Journal of Medicine. 2021. https://doi.org/10.1056/NEJMoa2107715
- Cerqueira-Silva T, Oliveira VdA, Pescarini J, et al. Influence of age on the effectiveness and duration of protection in Vaxzevria and CoronaVac vaccines. medRxiv.
 2021:2021.2008.2021.21261501.https://doi.org/10.1101/2021.08.21.21261501
- 18. A Study Looking at the Effectiveness and Safety of a COVID-19 Vaccine in South African Adults. In. ClinicalTrials.gov2021.
- 19. A Study Looking at the Effectiveness, Immune Response, and Safety of a COVID-19 Vaccine in Adults in the United Kingdom. In. ClinicalTrials.gov2021.
- 20. Paris C, Perrin S, Hamonic S, et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. *Clinical Microbiology and Infection*. 2021.https://doi.org/10.1016/j.cmi.2021.06.043
- 21. Katz MA, Bron Harlev E, Chazan B, et al. Covid-19 Vaccine Effectiveness in Healthcare Personnel in six Israeli Hospitals (CoVEHPI). *medRxiv*. 2021:2021.2008.2030.21262465.https://doi.org/10.1101/2021.08.30.21262465
- 22. Puranik A, Lenehan PJ, Silvert E, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv. 2021:2021.2008.2006.21261707.https://doi.org/10.1101/2021.08.06.21261707
- 23. Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. *The Lancet*. 2021;398(10309):1407-1416.https://doi.org/10.1016/S0140-6736(21)02183-8
- 24. Robles-Fontan MM, Nieves EG, Cardona-Gerena I, Irizarry RA. Time-Varying Effectiveness of Three Covid-19 Vaccines in Puerto Rico. *medRxiv*. 2021:2021.2010.2017.21265101.https://doi.org/10.1101/2021.10.17.21265101
- 25. Knobel P, Serra C, Grau S, et al. Coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness in asymptomatic healthcare workers. *Infection Control & Hospital Epidemiology*. 2021:1-2.https://doi.org/10.1017/ice.2021.287
- 26. Tande AJ, Pollock BD, Shah ND, Binnicker M, Berbari EF. mRNA Vaccine Effectiveness Against Asymptomatic SARS-CoV-2 Infection Over a Seven-Month Period. *Infect Control Hosp Epidemiol*. 2021:1-7.https://doi.org/10.1017/ice.2021.399
- 27. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. *New England Journal of Medicine*. 2021;385(7):585-594.https://doi.org/10.1056/NEJMoa2108891

- 28. Nasreen S, Chung H, He S, et al. Effectiveness of COVID-19 vaccines against variants of concern in Ontario, Canada. *medRxiv*. 2021:2021.2006.2028.21259420.https://doi.org/10.1101/2021.06.28.21259420
- 29. Seppälä E, Veneti L, Starrfelt J, et al. Vaccine effectiveness against infection with the delta (b.1.617.2) variant, norway, april to august 2021. *Eurosurveillance*. 2021;26(35).https://doi.org/10.2807/1560-7917.ES.2021.26.35.2100793
- 30. Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. *The Lancet.* 2021;397(10293):2461-2462.https://doi.org/10.1016/S0140-6736(21)01358-1
- 31. Pouwels KB, Pritchard E, Matthews P, et al. Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. *medRxiv*. 2021:2021.2008.2018.21262237.https://doi.org/10.1101/2021.08.18.21262237
- 32. Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. *Nature Medicine*. 2021.https://doi.org/10.1038/s41591-021-01446-y
- 33. Bruxvoort K, Sy LS, Qian L, et al. Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. 2021:2021.2009.2029.21264199.https://doi.org/10.1101/2021.09.29.21264199
- 34. Chen Y, Shen H, Huang R, Tong X, Wu C. Serum neutralising activity against SARS-CoV-2 variants elicited by CoronaVac. *The Lancet Infectious Diseases*. 2021;21(8):1071-1072.https://doi.org/10.1016/S1473-3099(21)00287-5
- 35. Gidari A, Sabbatini S, Bastianelli S, et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. *Journal of Infection*. 2021. https://doi.org/10.1016/j.jinf.2021.07.019
- 36. Ranzani O, Hitchings M, Neto M, et al. Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study. *medRxiv preprint*. 2021.https://doi.org/10.1101/2021.05.19.21257472
- 37. World Health Organization. The Sinovac-CoronaVac COVID-19 vaccine: What you need to know. World Health Organization. <a href="https://www.who.int/news-room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw4eaJBhDMARIsANhrQADBYtFm2zMvzbfjthveE2gmCJTRI_jPc_4HPIIFSwdZpzTix45gmEM0aAml9EALw_wcB. Published 2021. Updated 2 September 2021. Accessed 8 September, 2021.
- 38. State of Israel Ministry of Health. Vaccine efficacy among those first vaccinated. https://www.gov.il/BlobFolder/reports/vaccine-efficacy-safety-follow-up-committee/he/files_publications_corona_two-dose-vaccination-data.pdf Published 2021. Accessed 25 August, 2021.
- 40. Nanduri S, Pilishvili T, Derado G, Schrag SJ. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant National Healthcare Safety Network, March 1–August 1. *Morbidity* &

- Mortality Weekly Report. 2021;70(34):163-1166. https://doi.org/10.15585/mmwr.mm7034e3
- Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. Breakthrough SARS-CoV-2 infections in 620,000 U.S. Veterans, February 1, 2021 to August 13, 2021. medRxiv.
 2021:2021.2010.2013.21264966.https://doi.org/10.1101/2021.10.13.21264966
- 42. Mayo Foundation for Medical Education and Research (MFMER). Do COVID-19 vaccines protect against the variants? Mayo Clinic. Published 2021. Updated 24 August 2021. Accessed 8 September, 2021.
- 43. Chin ET, Leidner D, Zhang Y, et al. Effectiveness of the mRNA-1273 Vaccine during a SARS-CoV-2 Delta Outbreak in a Prison. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMc2114089
- 44. Mlcochova P, Kemp SA, Shanker Dhar M, et al. SARS-CoV-2 B.1.617.2 Delta variant replication, sensitivity to neutralising antibodies and vaccine breakthrough. *bioRxiv*. 2021:2021.2005.2008.443253.https://doi.org/10.1101/2021.05.08.443253
- 45. Li X-n, Huang Y, Wang W, et al. Efficacy of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. *Emerging Microbes & Infections*. 2021:1-32.https://doi.org/10.1080/22221751.2021.1969291
- 46. Stowe J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against hospital admission with the delta (B.1.617.2) variant. *Public Health Enland Publishing Preprint*. 2021. https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view_file/479607329? com_liferay_document_library_web_portlet_DLPortlet_INSTANCE_v2WsRK3ZlEig_redirect=https%3A%2F%2F https://khub.net/%3A443%2Fweb%2Fphe-national%2Fpublic-library%2F-%2Fdocument_library%2Fv2WsRK3ZlEig%2Fview%2F479607266.
- 47. Foley KE. J&J shot effective against Delta variant in large South Africa study. Politico. https://www.politico.eu/article/johnson-johnson-coronavirus-vaccine-delta-variant/. Published 2021. Updated 6 August 2021. Accessed 7 September, 2021.
- de Gier B, Andeweg S, Joosten R, et al. Vaccine effectiveness against SARS-CoV-2 transmission and infections among household and other close contacts of confirmed cases, the Netherlands, February to May 2021. *Eurosurveillance*. 2021;26(31).https://doi.org/10.2807/1560-7917.ES.2021.26.31.2100640
- 49. Tenforde MW, Self WH, Naioti EA, et al. Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults United States, March—July 2021. *Morbidity & Mortality Weekly Report.* 2021;70(34):1156-1162.https://doi.org/10.15585/mmwr.mm7034e2
- 50. Grannis SJ, Rowley EA, Ong TC, et al. Interim Estimates of COVID-19 Vaccine Effectiveness Against COVID-19–Associated Emergency Department or Urgent Care Clinic Encounters and Hospitalizations Among Adults During SARS-CoV-2 B.1.617.2 (Delta) Variant Predominance Nine States, June–August 2021. *Morbidity & Mortality Weekly Report.* 2021;70(37):1291–1293. https://www.cdc.gov/mmwr/volumes/70/wr/mm7037e2.htm.
- 51. Tartof SY, Slezak JM, Fischer H, et al. Six-Month Effectiveness of BNT162B2 mRNA COVID-19 Vaccine in a Large US Integrated Health System: A Retrospective Cohort Study. SSRN Preprint. 2021.https://doi.org/10.2139/ssrn.3909743
- 52. Sheikh A, Robertson C, Taylor B. BNT162b2 and ChAdOx1 nCoV-19 Vaccine Effectiveness against Death from the Delta Variant. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMc2113864

- Johnson & Johnson. Positive New Data for Johnson & Johnson Single-Shot COVID-19 Vaccine on Activity Against Delta Variant and Long-lasting Durability of Response. Johnson & Johnson. https://www.jnj.com/positive-new-data-for-johnson-johnson-single-shot-covid-19-vaccine-on-activity-against-delta-variant-and-long-lasting-durability-of-response. Published 2021. Updated 1 July 2021. Accessed 8 September, 2021.
- 54. Hu Z, Tao B, Li Z, et al. Effectiveness of inactive COVID-19 vaccines against severe illness in B.1.617.2 (Delta) variant-infected patients in Jiangsu, China. *medRxiv*. 2021:2021.2009.2002.21263010.https://doi.org/10.1101/2021.09.02.21263010
- 55. Israel A, Merzon E, Schäffer AA, et al. Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection in a large cohort. *medRxiv*. 2021:2021.2008.2003.21261496.https://doi.org/10.1101/2021.08.03.21261496
- 56. Salvagno GL, Henry B, Pighi L, De Nitto S, Lippi G. Total Anti-SARS-CoV-2 Antibodies Measured 6 Months After Pfizer-BioNTech COVID-19 Vaccination in Healthcare Workers. SSRN- Preprint. 2021.https://doi.org/10.2139/ssrn.3915349
- 57. Barin B, Kasap U, Selçuk F, Volkan E, Uluckan O. Longitudinal Comparison of SARS-CoV-2 Anti-Spike RBD IgG antibody Responses After CoronaVac, BNT162b2, ChAdOx1 nCoV-19 Vaccines and Evaluation of a Single Booster Dose of BNT162b2 or CoronaVac After a Primary CoronaVac Regimen. SSRN Preprint. 2021. https://ssrn.com/abstract=3929973.
- 58. Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMoa2114583
- 59. Doria-Rose N, Suthar MS, Makowski M, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. *New England Journal of Medicine*. 2021;384(23):2259-2261.https://doi.org/10.1056/NEJMc2103916
- 60. Flaxman A, Marchevsky N, Jenkin D, et al. Tolerability and Immunogenicity After a Late Second Dose or a Third Dose of ChAdOx1 nCoV-19 (AZD1222). SSRN Preprint. 2021. https://doi.org/10.2139/ssrn.3873839
- 61. Sadoff J, Le Gars M, Cardenas V, et al. Durability of antibody responses elicited by a single dose of Ad26.COV2.S and substantial increase following late boosting. *medRxiv*. 2021:2021.2008.2025.21262569.https://doi.org/10.1101/2021.08.25.21262569
- 62. Barouch DH, Stephenson KE, Sadoff J, et al. Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. *New England Journal of Medicine*. 2021.https://doi.org/http://doi.org/10.1056/NEJMc2108829
- 63. Badano MN, Sabbione F, Keitelman I, et al. Humoral response to the BBIBP-CorV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. *medRxiv*. 2021:2021.2010.2002.21264432.https://doi.org/10.1101/2021.10.02.21264432
- 64. Li M, Yang J, Wang L, et al. A booster dose is immunogenic and will be needed for older adults who have completed two doses vaccination with CoronaVac: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. *medRxiv*. 2021:2021.2008.2003.21261544.https://doi.org/10.1101/2021.08.03.21261544
- 65. Wang K, Cao YR, Zhou Y, et al. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. *medRxiv*.
 - 2021:2021.2009.2002.21261735.https://doi.org/10.1101/2021.09.02.21261735

- 66. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. *medRxiv*. 2021:2021.2008.2025.21262584.https://doi.org/10.1101/2021.08.25.21262584
- 67. Baden LR, ElSahly HM, Essink B, et al. Covid-19 in the Phase 3 Trial of mRNA-1273 During the Delta-variant Surge. *medRxiv*. 2021:2021.2009.2017.21263624.https://doi.org/10.1101/2021.09.17.21263624
- 68. Prunas O, Warren JL, Crawford FW, et al. Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. *medRxiv*. 2021:2021.2007.2013.21260393.https://doi.org/10.1101/2021.07.13.21260393
- 69. Riemersma KK, Grogan BE, Kita-Yarbro A, et al. Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent Wisconsin, July 2021. *medRxiv*. 2021;2021,2007,2031,21261387.https://doi.org/10.1101/2021.07.31,21261387
- 70. Harris RJ, Hall JA, Zaidi A, Andrews NJ, Dunbar JK, Dabrera G. Effect of vaccination on household transmission of sars-cov-2 in england. *New England Journal of Medicine*. 2021;385(8):759-760.https://doi.org/10.1056/NEJMc2107717
- 71. Shah ASV, Gribben C, Bishop J, et al. Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households. *medRxiv*. 2021:2021.2003.2011.21253275.https://doi.org/10.1101/2021.03.11.21253275
- 72. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. *Lancet*. 2021;397(10282):1351-1362.https://doi.org/10.1016/s0140-6736(21)00628-0
- 73. Oliver SE, Gargano JW, Marin M, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine United States, December 2020. MMWR Morbidity and mortality weekly report. 2020;69(50):1922-1924.https://doi.org/10.15585/mmwr.mm6950e2
- 74. Caminati M, Guarnieri G, Batani V, et al. Covid-19 vaccination in patients with severe asthma on biologic treatment: Safety, tolerability, and impact on disease control. *Vaccines*. 2021;9(8).https://doi.org/10.3390/vaccines9080853
- 75. Haroun F, Alharbi M, Hong A. Case series on the safety of mRNA COVID19 vaccines in cancer patients undergoing treatment. *Journal of Clinical Oncology*. 2021;39(15 SUPPL).https://doi.org/10.1200/JCO.2021.39.15_suppl.e14562
- 76. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *New England Journal of Medicine*. 2020;384(5):403-416.https://doi.org/10.1056/NEJMoa2035389
- 77. Wei N, Fishman M, Wattenberg D, Gordon M, Lebwohl M. "COVID arm": A reaction to the Moderna vaccine. *JAAD Case Rep.* 2021;10:92-95.https://doi.org/10.1016/j.jdcr.2021.02.014
- 78. Voysey M, Costa Clemens SA, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *The Lancet*. 2021;397(10269):99-111.https://doi.org/10.1016/S0140-6736(20)32661-1
- 79. Ghiasi N, Valizadeh R, Arabsorkhi M, et al. Efficacy and side effects of Sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19; a review and discussion. 2021. https://doi.org/http://immunopathol.com/PDF/ipp-7-e31.pdf
- 80. Shay DK, Gee J, Su JR, et al. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine United States, March–April 2021. *Morbidity and Mortality Weekly*

- Report. 2021;70(18):680–684.https://doi.org/http://dx.doi.org/10.15585/mmwr.mm7018e2external
- 81. Saeed BQ, Al-Shahrabi R, Alhaj SS, Alkokhardi ZM, Adrees AO. Side Effects and Perceptions Following Sinopharm COVID-19 Vaccination. *Int J Infect Dis.* 2021.https://doi.org/10.1016/j.ijid.2021.08.013
- 82. Palacios R, Batista AP, Santos Nascimento Albuquerque C, et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN Preprint. 2021.https://doi.org/http://dx.doi.org/10.2139/ssrn.3822780
- 83. Durmaz K, Temiz SA, Zuhal K, Dursun R, Abdelmaksoud A. Allergic and Cutaneous reactions following Inactivated SARS-CoV-2 vaccine (CoronaVac®) in Healthcare workers. *Clin Exp Dermatol.* 2021.https://doi.org/10.1111/ced.14896
- 84. Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMoa2107659
- 85. Kim HW, Jenista ER, Wendell DC, et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. *JAMA Cardiology*. 2021.https://doi.org/10.1001/jamacardio.2021.2828
- 86. Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. *Circulation*. 2021;144(6):471-484.https://doi.org/doi:10.1161/CIRCULATIONAHA.121.056135
- 87. Kafil T, Lamacie MM, Chenier S, et al. mRNA COVID-19 Vaccination and Development of CMR-confirmed Myopericarditis. *medRxiv*. 2021:2021.2009.2013.21262182.https://doi.org/10.1101/2021.09.13.21262182
- 88. Cirillo N. Reported orofacial adverse effects of COVID-19 vaccines: The knowns and the unknowns. *Journal of Oral Pathology & Medicine*. 2021;50(4):424-427.https://doi.org/10.1111/jop.13165
- 89. Shimabukuro T. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine United States, December 14-23, 2020. *Am J Transplant.* 2021;21(3):1332-1337.https://doi.org/10.1111/ajt.16516
- 90. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine*. 2020;383(27):2603-2615.https://doi.org/10.1056/NEJMoa2034577
- 91. Cohen OG, Clark AK, Milbar H, Tarlow M. Pityriasis rosea after administration of Pfizer-BioNTech COVID-19 vaccine. *Hum Vaccin Immunother*. 2021:1-2.https://doi.org/10.1080/21645515.2021.1963173
- 92. Temiz SA, Abdelmaksoud A, Dursun R, Durmaz K, Sadoughifar R, Hasan A. Pityriasis rosea following SARS-CoV-2 vaccination: A case series. *Journal of Cosmetic Dermatology*. 2021. https://doi.org/10.1111/jocd.14372
- 93. Vassallo C, Boveri E, Brazzelli V, et al. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine. *Dermatol Ther*. 2021:e15076.https://doi.org/10.1111/dth.15076
- 94. Santovito LS, Pinna G. A case of reactivation of varicella-zoster virus after BNT162b2 vaccine second dose? *Inflamm Res.* 2021:1-3.https://doi.org/10.1007/s00011-021-01491-w
- 95. Fathy RA, McMahon DE, Lee C, et al. Varicella Zoster and Herpes Simplex Virus Reactivation Post-COVID-19 Vaccination: A Review of 40 Cases in an International Dermatology Registry. *J Eur Acad Dermatol Venereol.* 2021.https://doi.org/10.1111/jdv.17646

- Papasavvas I, de Courten C, Herbort CP, Jr. Varicella-zoster virus reactivation causing herpes zoster ophthalmicus (HZO) after SARS-CoV-2 vaccination report of three cases. *J Ophthalmic Inflamm Infect*.
 2021;11(1):28.https://doi.org/10.1186/s12348-021-00260-4
- 97. Soub HA, Ibrahim W, Maslamani MA, A. Ali G, Ummer W, Abu-Dayeh A. Kikuchi-Fujimoto disease following SARS CoV2 vaccination: Case report. *IDCases*. 2021;25.https://doi.org/10.1016/j.idcr.2021.e01253
- 98. Chamarti K, Dar K, Reddy A, Gundlapalli A, Mourning D, Bajaj K. Thrombotic Thrombocytopenic Purpura Presentation in an Elderly Gentleman Following COVID Vaccine Circumstances. *Cureus*. 2021;13(7):e16619.https://doi.org/10.7759/cureus.16619
- 99. Collins EC, Carr MJ, Kim JS, et al. Immune thrombocytopenia in 2 healthy young women after the Pfizer-BioNTech BNT16B2b2 messenger RNA coronavirus disease 2019 vaccination. *J Am Coll Emerg Physicians Open.* 2021;2(5):e12531.https://doi.org/10.1002/emp2.12531
- 100. Horino T. IgA nephropathy flare-up following SARS-CoV-2 vaccination. QJM: monthly journal of the Association of Physicians. 2021.https://doi.org/10.1093/qjmed/hcab223
- 101. Hughes DL, Brunn JA, Jacobs J, Todd PK, Askari FK, Fontana RJ. Guillain-Barré syndrome after COVID-19 mRNA vaccination in a liver transplant recipient with favorable treatment response. *Liver Transpl.* 2021.https://doi.org/10.1002/lt.26279
- 102. Osowicki J, Morgan H, Harris A, Crawford NW, Buttery JP, Kiers L. Guillain-Barré Syndrome in an Australian state using both mRNA and adenovirus-vector SARS-CoV-2 vaccines. *Ann Neurol.* 2021.https://doi.org/10.1002/ana.26218
- Perna D, Jones J, Schadt CR. Acute generalized pustular psoriasis exacerbated by the COVID-19 vaccine. *JAAD Case Rep.* 2021.https://doi.org/10.1016/j.jdcr.2021.08.035
- 104. Iwata H, Kamiya K, Kado S, et al. Case of immunoglobulin A vasculitis following coronavirus disease 2019 vaccination. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16167
- Mücke VT, Knop V, Mücke MM, Ochsendorf F, Zeuzem S. First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: a case report. BMC Infect Dis. 2021;21(1):958.https://doi.org/10.1186/s12879-021-06655-x
- 106. Elias C, Cardoso P, Gonçalves D, Vaz I, Cardoso L. Rhabdomyolysis Following Administration of Comirnaty(®). *Eur J Case Rep Intern Med.* 2021;8(8):002796.https://doi.org/10.12890/2021 002796
- 107. Franquemont S, Galvez J. Subacute Thyroiditis After mRNA Vaccine for Covid-19. J Endocr Soc. 2021;5(Suppl 1):A956-A957.https://doi.org/10.1210/jendso/bvab048.1954
- 108. Sato K, Mano T, Niimi Y, Toda T, Iwata A, Iwatsubo T. Facial nerve palsy following the administration of COVID-19 mRNA vaccines: analysis of a self-reporting database. *Int J Infect Dis.* 2021;111:310-312.https://doi.org/10.1016/j.iijid.2021.08.071
- 109. Buján Bonino C, Moreiras Arias N, López-Pardo Rico M, et al. Atypical erythema multiforme related to BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. Int J Dermatol. 2021.https://doi.org/10.1111/ijd.15894
- 110. Yoshifuji A, Ishioka K, Masuzawa Y, et al. COVID-19 vaccine induced interstitial lung disease. *J Infect Chemother*. 2021. https://doi.org/10.1016/j.jiac.2021.09.010

- 111. Valenzuela DA, Groth S, Taubenslag KJ, Gangaputra S. Acute macular neuroretinopathy following Pfizer-BioNTech COVID-19 vaccination. *Am J Ophthalmol Case Rep.* 2021;24:101200.https://doi.org/10.1016/j.ajoc.2021.101200
- Coffman JR, Randolph AC, Somerson JS. Parsonage-Turner Syndrome After SARS-CoV-2 BNT162b2 Vaccine: A Case Report. *JBJS Case Connect*. 2021;11(3).https://doi.org/10.2106/jbjs.Cc.21.00370
- 113. Rubinstein TJ. Thyroid Eye Disease Following COVID-19 Vaccine in a Patient With a History Graves' Disease: A Case Report. *Ophthalmic Plast Reconstr Surg.* 2021. https://doi.org/10.1097/iop.0000000000000059
- 114. Yamamoto K, Mashiba T, Takano K, et al. A case of exacerbation of subclinical hyperthyroidism after first administration of bnt162b2 mrna covid-19 vaccine. *Vaccines*. 2021;9(10).https://doi.org/10.3390/vaccines9101108
- 115. Nassar M, Chung H, Dhayaparan Y, et al. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. *Diabetes Metab Syndr.* 2021;15(4):102170-102170.https://doi.org/10.1016/j.dsx.2021.06.007
- 116. Hong S, Fata M, Rahim M, Hanly B, Omidvari K. A RARE CASE OF INTERNAL JUGULAR VEIN THROMBOSIS AFTER MRNA COVID-19 VACCINE. *Chest.* 2021;160(4):A457-A458.https://doi.org/10.1016/j.chest.2021.07.449
- 117. Alkhalifah MI, Alsobki HE, Alwael HM, Al Fawaz AM, Al-Mezaine HS. Herpes Simplex Virus Keratitis Reactivation after SARS-CoV-2 BNT162b2 mRNA Vaccination: A Report of Two Cases. *Ocular Immunology and Inflammation*. 2021.https://doi.org/10.1080/09273948.2021.1986548
- 118. Abou-Foul AK, Ross E, Abou-Foul M, George AP. Cervical lymphadenopathy following coronavirus disease 2019 vaccine: clinical characteristics and implications for head and neck cancer services. *J Laryngol Otol.* 2021;135(11):1025-1030.https://doi.org/10.1017/s0022215121002462
- 119. Klomjit N, Alexander MP, Fervenza FC, et al. COVID-19 vaccination and glomerulonephritis. *Kidney Int Rep.* 2021. https://doi.org/10.1016/j.ekir.2021.09.008
- 120. Rodríguez-Martín M, Corriols-Noval P, López-Simón E, Morales-Angulo C. Ramsay Hunt syndrome following mRNA SARS-COV-2 vaccine. *Enferm Infecc Microbiol Clin (Engl Ed)*. 2021.https://doi.org/10.1016/j.eimce.2021.06.003
- 121. Iftikhar H, Noor SMU, Masood M, Bashir K. Bell's Palsy After 24 Hours of mRNA-1273 SARS-CoV-2 Vaccine. *Cureus*. 2021;13(6):e15935e15935.https://doi.org/10.7759/cureus.15935
- 122. Thimmanagari K, Veeraballi S, Roach D, Al Omour B, Slim J. Ipsilateral Zoster Ophthalmicus Post COVID-19 Vaccine in Healthy Young Adults. *Cureus*. 2021;13(7):e16725.https://doi.org/10.7759/cureus.16725
- 123. Drerup KA, Gläser R. SARS-CoV-2—update on skin manifestations, predictive markers and cutaneous reactions after vaccination. *Hautarzt.* 2021.https://doi.org/10.1007/s00105-021-04881-7
- 124. Khan E, Shrestha AK, Colantonio MA, Liberio RN, Sriwastava S. Acute transverse myelitis following SARS-CoV-2 vaccination: a case report and review of literature. *Journal of Neurology.* 2021. https://doi.org/10.1007/s00415-021-10785-2
- 125. Christensen SK, Ballegaard M, Boesen MS. Guillian Barré syndromeafter mRNA-1273 vaccination against COVID-19. *Ugeskr Laeger*. 2021;183(35). Published 2021/09/04.
- 126. Matarneh AS, Al-Battah AH, Farooqui K, Ghamoodi M, Alhatou M. COVID-19 vaccine causing Guillain-Barre syndrome, a rare potential side effect. *Clin Case Rep.* 2021;9(9):e04756.https://doi.org/10.1002/ccr3.4756

- 127. Agaronov A, Makdesi C, Hall CS. Acute generalized exanthematous pustulosis induced by Moderna COVID-19 messenger RNA vaccine. *JAAD Case Rep.* 2021;16:96-97.https://doi.org/10.1016/j.jdcr.2021.08.013
- 128. Ajmera KM. Fatal case of rhabdomyolysis post-covid-19 vaccine. *Infection and Drug Resistance*, 2021;14:3929-3935.https://doi.org/10.2147/IDR.S331362
- 129. Mack M, Nichols L, Guerrero DM. Rhabdomyolysis Secondary to COVID-19 Vaccination. *Cureus*. 2021;13(5):e15004.https://doi.org/10.7759/cureus.15004
- Ganga K, Solyar AY, Ganga R. Massive Cervical Lymphadenopathy Post-COVID-19 Vaccination. *Ear Nose Throat J.* 2021:1455613211048984.https://doi.org/10.1177/01455613211048984
- 131. Català A, Muñoz-Santos C, Galván-Casas C, et al. Cutaneous reactions after SARS-COV-2 vaccination: A cross-sectional Spanish nationwide study of 405 cases. *The British journal of dermatology.* 2021. https://doi.org/10.1111/bjd.20639
- 132. Guzmán-Pérez L, Puerta-Peña M, Falkenhain-López D, et al. Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2. *Journal of the European Academy of Dermatology and Venereology*. 2021.https://doi.org/10.1111/jdv.17547
- 133. Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and Intracranial Venous Sinus Thrombosis after "COVID-19 Vaccine AstraZeneca" Exposure. *Journal of Clinical Medicine*. 2021;10(8):1599. https://www.mdpi.com/2077-0383/10/8/1599.
- 134. Schulz JB, Berlit P, Diener HC, et al. COVID-19 vaccine-associated cerebral venous thrombosis in Germany. *Annals of neurology*. 2021. https://doi.org/10.1002/ana.26172
- 135. Perera R, Fletcher J. Thromboembolism and the Oxford-AstraZeneca vaccine. *BMJ*. 2021;373:n1159.https://doi.org/10.1136/bmj.n1159
- 136. Althaus K, Möller P, Uzun G, et al. Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic thrombocytopenia. *Haematologica*. 2021;106(8):2170-2179.https://doi.org/10.3324/haematol.2021.279000
- 137. Al Rawahi B, BaTaher H, Jaffer Z, Al-Balushi A, Al-Mazrouqi A, Al-Balushi N. Vaccine-induced immune thrombotic thrombocytopenia following AstraZeneca (ChAdOx1 nCOV19) vaccine-A case report. Res Pract Thromb Haemost. 2021;5(6):e12578.https://doi.org/10.1002/rth2.12578
- 138. Asmat H, Fayeye F, Alshakaty H, Patel J. A rare case of COVID-19 vaccine-induced thrombotic thrombocytopaenia (VITT) involving the veno-splanchnic and pulmonary arterial circulation, from a UK district general hospital. *BMJ Case Rep.* 2021;14(9).https://doi.org/10.1136/bcr-2021-244223
- 139. Alalwan AA, Abou Trabeh A, Premchandran D, Razeem M. COVID-19 Vaccine-Induced Thrombotic Thrombocytopenia: A Case Series. *Cureus*. 2021;13(9):e17862.https://doi.org/10.7759/cureus.17862
- 140. Wolthers SA, Stenberg J, Nielsen HB, Stensballe J, Pedersen HP. Intracerebral haemorrhage twelve days after vaccination with ChAdOx1 nCoV-19. *Ugeskr Laeger*. 2021;183(35). Published 2021/09/04.
- Kar BR, Singh BS, Mohapatra L, Agrawal I. Cutaneous small-vessel vasculitis following COVID-19 vaccine. *J Cosmet Dermatol*. 2021.https://doi.org/10.1111/jocd.14452
- 142. Fang WC, Chiu LW, Hu SC. Psoriasis exacerbation after first dose of AstraZeneca coronavirus disease 2019 vaccine. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16137

- 143. Corrêa DG, Cañete LAQ, dos Santos GAC, de Oliveira RV, Brandão CO, da Cruz LCH. Neurological symptoms and neuroimaging alterations related with COVID-19 vaccine: Cause or coincidence? *Clinical Imaging*. 2021;80:348-352.https://doi.org/10.1016/j.clinimag.2021.08.021
- 144. Oh HK, Kim EK, Hwang I, et al. COVID-19 vaccine safety monitoring in the Republic of Korea: February 26, 2021 to April 30, 2021. *Osong Public Health Res Perspect*. 2021;12(4):264-268.https://doi.org/10.24171/j.phrp.2021.0157
- 145. Mohta A, Arora A, Srinivasa R, Mehta RD. Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria being treated with cyclosporine—A report of 3 cases. *Journal of Cosmetic Dermatology*. 2021.https://doi.org/10.1111/jocd.14437
- 146. Wantavornprasert K, Noppakun N, Klaewsongkram J, Rerknimitr P. Generalized Bullous Fixed Drug Eruption after ChAdOx1 nCoV-19 Vaccination. *Clin Exp Dermatol.* 2021.https://doi.org/10.1111/ced.14926
- 147. Oo WM, Giri P, de Souza A. AstraZeneca COVID-19 vaccine and Guillain- Barré Syndrome in Tasmania: A causal link? *J Neuroimmunol*. 2021;360:577719.https://doi.org/10.1016/j.jneuroim.2021.577719
- 148. Pedrazini MC, da Silva MH. "Pityriasis Rosea-like cutaneous eruption as a possible dermatological manifestation after Oxford-AstraZeneca vaccine: case report and brief literature review.". *Dermatol Ther.* 2021:e15129.https://doi.org/10.1111/dth.15129
- Leerunyakul K, Pakornphadungsit K, Suchonwanit P. Case Report: Pityriasis Rosea-Like Eruption Following COVID-19 Vaccination. Front Med (Lausanne). 2021;8:752443.https://doi.org/10.3389/fmed.2021.752443
- 150. Maguire D, McLaren DS, Rasool I, Shah PM, Lynch J, Murray RD. ChAdOx1 SARS-CoV-2 vaccination: A putative precipitant of adrenal crises. *Clinical Endocrinology*. 2021.https://doi.org/10.1111/cen.14566
- 151. Elbæk MV, Vinding GR, Jemec GBE. Darier's Disease Flare following COVID-19 Vaccine. Case Rep Dermatol. 2021;13(2):432-436.https://doi.org/10.1159/000517256
- 152. Wu RW, Lin TK. Oxford-AstraZeneca COVID-19 vaccine-induced acute localized exanthematous pustulosis. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16138
- 153. Sirufo MM, Raggiunti M, Magnanimi LM, Ginaldi L, De Martinis M. Henoch-schönlein purpura following the first dose of covid-19 viral vector vaccine: A case report. *Vaccines*. 2021;9(10).https://doi.org/10.3390/vaccines9101078
- 154. Tan A, Stepien KM, Narayana STK. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. Qjm. 2021. https://doi.org/10.1093/qjmed/hcab077
- 155. Sriphrapradang C, Shantavasinkul PC. Graves' disease following SARS-CoV-2 vaccination. *Endocrine*. 2021.https://doi.org/10.1007/s12020-021-02902-y
- 156. Nasuelli NA, De Marchi F, Cecchin M, et al. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine. *Neurol Sci.* 2021;42(11):4747-4749. https://doi.org/10.1007/s10072-021-05467-w
- 157. Mehta H, Handa S, Malhotra P, et al. Erythema nodosum, zoster duplex and pityriasis rosea as possible cutaneous adverse effects of Oxford-AstraZeneca COVID-19 vaccine: report of three cases from India. *J Eur Acad Dermatol Venereol.* 2021.https://doi.org/10.1111/jdv.17678
- 158. MacNeil JR, Su JR, Broder KR, et al. Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome

- Among Vaccine Recipients United States, April 2021. *MMWR Morbidity and mortality weekly report.* 2021;70(17):651-656.https://doi.org/10.15585/mmwr.mm7017e4
- U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: July 13, 2021.
 U.S Food & Drug Administration. Published 2021. Updated 13 July 2021. Accessed 18 August, 2021.
- 160. Kemper M, Berssenbrügge C, Lenz G, Mesters RM. Vaccine-induced pseudothrombocytopenia after Ad26.COV2.S vaccination. *Annals of Hematology*. 2021.https://doi.org/10.1007/s00277-021-04611-y
- 161. Akuna M, Qureshi M, Miller N. VITT reaction associated with Johnson & Johnson vaccine. *Chest.* 2021;160(4):A811.https://doi.org/10.1016/j.chest.2021.07.764
- 162. Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. *JAMA*. 2021;326(1):35-45.https://doi.org/10.1001/jama.2021.8565
- Huang L, Yao Z, Zhang J. Two cases of pityriasis rosea after the injection of coronavirus disease 2019 vaccine. J Eur Acad Dermatol Venereol. 2021. https://doi.org/10.1111/jdv.17648
- 164. Pan L, Zhang Y, Cui Y, Wu X. Bilateral uveitis after inoculation with COVID-19 vaccine: A case report. *Int J Infect Dis.* 2021. https://doi.org/10.1016/j.ijid.2021.09.075
- 165. Tutar NK, EyigÜRbÜZ T, Yildirim Z, Kale N. A variant of guillain-barre syndrome after sars-cov-2 vaccination: Amsan. *Ideggyogyaszati Szemle*. 2021;74(7-8):286-288.https://doi.org/10.18071/ISZ.74.0286
- 166. Saygılı ES, Karakilic E. Subacute thyroiditis after inactive SARS-CoV-2 vaccine. *BMJ Case Rep.* 2021;14(10).https://doi.org/10.1136/bcr-2021-244711
- 167. Zhang LW, Wang WJ, Li CH, Chen T. Erythema multiforme after SARS-CoV-2 vaccine. *J Eur Acad Dermatol Venereol*. 2021.https://doi.org/10.1111/jdv.17689
- 168. Shimazawa R, Ikeda M. Potential adverse events in Japanese women who received tozinameran (BNT162b2, Pfizer-BioNTech). *Journal of Pharmaceutical Policy and Practice*. 2021;14(1):46.https://doi.org/10.1186/s40545-021-00326-7
- 169. Saito K, Shimizu T, Suzuki-Inoue K, Ishida T, Wada Y. Aseptic meningitis after vaccination of the BNT162b2 mRNA COVID-19 vaccine. *Neurol Sci.* 2021:1-3.https://doi.org/10.1007/s10072-021-05543-1
- 170. Bril F, Fettig DM. Reply to: "Comment on "Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty?"". *Journal of Hepatology*. 2021. https://doi.org/10.1016/j.jhep.2021.06.008
- 171. Palla P, Vergadis C, Sakellariou S, Androutsakos T. Letter to the editor: Autoimmune hepatitis after COVID-19 vaccination. A rare adverse effect? *Hepatology*. 2021.https://doi.org/10.1002/hep.32156
- 172. Maniscalco GT, Manzo V, Di Battista ME, et al. Severe Multiple Sclerosis Relapse After COVID-19 Vaccination: A Case Report. *Front Neurol.* 2021;12:721502.https://doi.org/10.3389/fneur.2021.721502
- 173. Takenaka T, Matsuzaki M, Fujiwara S, Hayashida M, Suyama H, Kawamoto M. Myeloperoxidase Anti-neutrophil Cytoplasmic Antibody Positive Optic Perineuritis after mRNA Coronavirus Disease-19 Vaccine: A Case Report. *Qjm.* 2021.https://doi.org/10.1093/qjmed/hcab227
- 174. Endo B, Bahamon S, Martínez-Pulgarín DF. Central retinal vein occlusion after mRNA SARS-CoV-2 vaccination: A case report. *Indian J Ophthalmol*. 2021;69(10):2865-2866.https://doi.org/10.4103/ijo.IJO_1477_21

- 175. Vinzamuri S, Pradeep TG, Kotian R. Bilateral paracentral acute middle maculopathy and acute macular neuroretinopathy following COVID-19 vaccination. *Indian J Ophthalmol.* 2021;69(10):2862-2864.https://doi.org/10.4103/ijo.IJO_1333_21
- 176. Elboraey MO, Essa E. Stevens-Johnson syndrome post second dose of Pfizer COVID-19 vaccine: a case report. *Oral Surg Oral Med Oral Pathol Oral Radiol.* 2021;132(4):e139-e142.https://doi.org/10.1016/j.oooo.2021.06.019
- 177. Bakir M, Almeshal H, Alturki R, Obaid S, Almazroo A. Toxic Epidermal Necrolysis Post COVID-19 Vaccination First Reported Case. *Cureus*. 2021;13(8):e17215.https://doi.org/10.7759/cureus.17215
- 178. Onn PY, Chang CL. Lichenoid cutaneous skin eruption and associated systemic inflammatory response following Pfizer-BioNTech mRNA COVID-19 vaccine administration. *Respirol Case Rep.* 2021;9(11):e0860.https://doi.org/10.1002/rcr2.860
- 179. Yesilkaya UH, Sen M, Tasdemir BG. A novel adverse effect of the BNT162b2 mRNA vaccine: First episode of acute mania with psychotic features. *Brain Behav Immun Health*. 2021;18:100363.https://doi.org/10.1016/j.bbih.2021.100363
- 180. Sung JG, Sobieszczyk PS, Bhatt DL. Acute Myocardial Infarction Within 24 Hours After COVID-19 Vaccination. *Am J Cardiol*. 2021;156:129-131.https://doi.org/10.1016/j.amjcard.2021.06.047
- 181. Gadi SRV, Brunker PAR, Al-Samkari H, et al. Severe autoimmune hemolytic anemia following receipt of SARS-CoV-2 mRNA vaccine. *Transfusion*. 2021.https://doi.org/10.1111/trf.16672
- 182. Murvelashvili N, Tessnow A. A Case of Hypophysitis Following Immunization With the mRNA-1273 SARS-CoV-2 Vaccine. *Journal of Investigative Medicine High Impact Case Reports*. 2021;9.https://doi.org/10.1177/23247096211043386
- 183. Herrera M, West K, Holstein H. ERYTHEMA NODOSUM-LIKE RASH AFTER SARS-COV-2 VACCINATION: A CASE REPORT. Chest. 2021;160(4):A1380.https://doi.org/10.1016/j.chest.2021.07.1261
- 184. Saxby K, Kingsborough B, Young D, Capone D. MODERNA VACCINE PULMONARY EMBOLISM: ASSOCIATION VS COINCIDENCE. *CHEST*. 2021;160(4):A54.https://doi.org/10.1016/j.chest.2021.07.086
- 185. Abramson M, Mon-Wei Yu S, Campbell KN, Chung M, Salem F. IgA Nephropathy After SARS-CoV-2 Vaccination. *Kidney Medicine*. 2021.https://doi.org/10.1016/j.xkme.2021.05.002
- 186. Londoño MC, Gratacós-Ginès J, Sáez-Peñataro J. Another case of autoimmune hepatitis after SARS-CoV-2 vaccination still casualty? *Journal of Hepatology*. 2021;75(5):1248-1249.https://doi.org/10.1016/j.jhep.2021.06.004
- 187. Bril F. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: One or even several swallows do not make a summer. *Journal of Hepatology*. 2021;75(5):1256-1257.https://doi.org/10.1016/j.jhep.2021.08.001
- 188. Edwards AE, Vathenen R, Henson SM, Finer S, Gunganah K. Acute hyperglycaemic crisis after vaccination against COVID-19: A case series. *Diabet Med.* 2021:e14631.https://doi.org/10.1111/dme.14631
- 189. Essam R, Ehab R, Al-Razzaz R, Khater MW, Moustafa EA. Alopecia areata after ChAdOx1 nCoV-19 vaccine (Oxford/AstraZeneca): a potential triggering factor? *J Cosmet Dermatol.* 2021.https://doi.org/10.1111/jocd.14459
- 190. Crane P, Wong C, Mehta N, Barlis P. Takotsubo (stress) cardiomyopathy after ChAdOx1 nCoV-19 vaccination. BMJ Case Rep. 2021;14(10).https://doi.org/10.1136/bcr-2021-246580

- 191. Rinaldi V, Bellucci G, Sforza M, et al. Suspected acute disseminated encephalomyelitis (ADEM) after ChAdOx1 nCoV-19 vaccine: A case report. *Journal of the neurological sciences official journal of the World Federation of Neurology.* 2021;429:119796.
- 192. Jain E, Pandav K, Regmi P, Michel G, Altshuler I. Facial Diplegia: A Rare, Atypical Variant of Guillain-Barré Syndrome and Ad26.COV2.S Vaccine. *Cureus*. 2021;13(7):e16612.https://doi.org/10.7759/cureus.16612
- 193. Lane S, Shakir S. Reports of myocarditis and pericarditis following mRNA COVID-19 vaccines: A review of spontaneously reported data from the UK, Europe, and the US. medRxiv. 2021:2021.2009.2009.21263342.https://doi.org/10.1101/2021.09.09.21263342
- 194. Witberg G, Barda N, Hoss S, et al. Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. New England Journal of Medicine. 2021.https://doi.org/10.1056/NEJMoa2110737
- 195. Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMoa2109730
- 196. Simone A, Herald J, Chen A, et al. Acute Myocarditis Following COVID-19 mRNA Vaccination in Adults Aged 18 Years or Older. *JAMA Internal Medicine*. 2021.https://doi.org/10.1001/jamainternmed.2021.5511
- Levin D, Shimon G, Fadlon-Derai M, et al. Myocarditis following COVID-19 vaccination A case series. *Vaccine*.
 2021.https://doi.org/10.1016/j.vaccine.2021.09.004
- 198. Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. *New England Journal of Medicine*. 2021;385(3):239-250.https://doi.org/10.1056/NEJMoa2107456
- 199. VACCINES AND RELATED BIOLOGICAL PRODUCTS ADVISORY COMMITTEE BRIEFING DOCUMENT [press release]. 26 October 2021 2021.
- 200. Study to Evaluate the Safety, Tolerability, and Immunogenicity of an RNA Vaccine Candidate Against COVID-19 in Healthy Children <12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04816643.
- 201. Ali K, Berman G, Zhou H, et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. *N Engl J Med.* 2021. https://doi.org/10.1056/NEJMoa2109522
- 202. A Study to Evaluate Safety and Effectiveness of mRNA-1273 COVID-19 Vaccine in Healthy Children Between 6 Months of Age and Less Than 12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04796896.
- 203. Ewen Callaway. COVID vaccines and kids: five questions as trials begin. https://www.nature.com/articles/d41586-021-01061-4. Published 2021. Accessed August 11, 2021, 2021.
- 204. Han B, Song Y, Li C, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. *The Lancet Infectious Diseases*. 2021.https://doi.org/10.1016/S1473-3099(21)00319-4
- 205. Novavax Initiates Pediatric Expansion for Phase 3 Clinical Trial of COVID-19 Vaccine [press release]. May 3, 2021 2021.
- 206. Pfizer and BioNtech Announce Positive Topline Results from Pivotal Trial of COVID-19 Vaccine in Children 5 to 11 Years [press release]. September 20, 2021 2021.
- 207. Moderna Announces Positive Top Line Data from Phase 2/3 Study of COVID-19 Vaccine in Children 6 to 11 Years of Age [press release]. 25 October 2021 2021.

- 208. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, doubleblind, controlled, phase 1/2 trial. *Lancet Infect Dis*. 2021.https://doi.org/10.1016/s1473-3099(21)00462-x
- 209. A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥ 18 Years With a Pediatric Expansion in Adolescents (12 to < 18 Years) at Risk for SARS-CoV-2. In. ClinicalTrials.gov2021.
- 210. Glatman-Freedman A, Hershkovitz Y, Kaufman Z, Dichtiar R, Keinan-Boker L, Bromberg M. Effectiveness of BNT162b2 Vaccine in Adolescents during Outbreak of SARS-CoV-2 Delta Variant Infection, Israel, 2021. *Emerging Infectious Diseases*. 2021;27(11):2919-2922.https://doi.org/10.3201/eid2711.211886.
- 211. Tartof; SY, Slezak; JM, Fischer; H, et al. Six-Month Effectiveness of BNT162B2 mRNA COVID-19 Vaccine in a Large US Integrated Health System: A Retrospective Cohort Study. SSRN Preprint. 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3909743.
- 212. Olson S, Newhams MM, Halasa NB, et al. Effectiveness of Pfizer-BioNTech mRNA Vaccination Against COVID-19 Hospitalization Among Persons Aged 12–18 Years. Morbidity & Mortality Weekly Report. 2021;70.https://doi.org/10.15585/mmwr.mm7042e1
- 213. Chai Q, Nygaard U, Schmidt RC, Zaremba T, Møller AM, Thorvig CM. Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. *Acta Paediatr*. 2021.https://doi.org/10.1111/apa.16141
- 214. Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? *Children*. 2021;8(7).https://doi.org/10.3390/children8070607
- 215. University of Oxford. Comparing COVID-19 Vaccine Schedule Combinations. https://comcovstudy.org.uk/about-com-cov2. Published 2021. Accessed September 2, 2021.
- 216. Liu X, Shaw RH, Stuart ASV, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. *Lancet.* 2021.https://doi.org/10.1016/S0140-6736(21)01694-9
- Schmidt T, Klemis V, Schub D, et al. Immunogenicity and reactogenicity of a heterologous COVID-19 prime-boost vaccination compared with homologous vaccine regimens. *medRxiv*.
 2021:2021.2006.2013.21258859.https://doi.org/10.1101/2021.06.13.21258859
- 218. Borobia AM, Carcas AJ, Pérez-Olmeda M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. *The Lancet.* 2021;398(10295):121-130.https://doi.org/10.1016/S0140-6736(21)01420-3
- 219. Pozzetto B, Legros V, Djebali S, et al. Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination. *Nature*. 2021. https://doi.org/10.1038/s41586-021-04120-v
- 220. Yorsaeng R, Vichaiwattana P, Klinfueng S, et al. Immune response elicited from heterologous SARS-CoV-2 vaccination: Sinovac (CoronaVac) followed by AstraZeneca (Vaxzevria). *medRxiv*. 2021:2021.2009.2001.21262955.https://doi.org/10.1101/2021.09.01.21262955

- 221. Li J, Hou L, Guo X, et al. Heterologous prime-boost immunization with CoronaVac and Convidecia. *medRxiv*. 2021:2021.2009.2003.21263062.https://doi.org/10.1101/2021.09.03.21263062
- 222. Safety and Efficacy of COVID-19 Prime-boost Vaccine in Bahrain. In: https://ClinicalTrials.gov/show/NCT04993560.
- 223. Moderna Announces Positive Initial Booster Data Against SARS-CoV-2 Variants of Concern [press release]. Cambridge, Massachusetts, May 5 2021.
- 224. Flaxman A, Marchevsky NG, Jenkin D, et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). *Lancet*. 2021.https://doi.org/10.1016/s0140-6736(21)01699-8
- 225. Novavax Announces COVID-19 Vaccine Booster Data Demonstrating Four-Fold Increase in Neutralizing Antibody Levels Versus Peak Responses After Primary Vaccination [press release]. Novavax August 5, 2021 2021.
- 226. PFIZER AND BIONTECH ANNOUNCE PHASE 3 TRIAL DATA SHOWING HIGH EFFICACY OF A BOOSTER DOSE OF THEIR COVID-19 VACCINE [press release]. 21 October 2021 2021.
- 227. Barda N, Dagan N, Cohen C, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. *The Lancet*.https://doi.org/10.1016/S0140-6736(21)02249-2
- 228. PFIZER AND BIONTECH ANNOUNCE SUBMISSION OF INITIAL DATA TO U.S. FDA TO SUPPORT BOOSTER DOSE OF COVID-19 VACCINE [press release]. NEW YORK & MAINZ, Germany2021.
- 229. Wu K, Choi A, Koch M, et al. Preliminary Analysis of Safety and Immunogenicity of a SARS-CoV-2 Variant Vaccine Booster. *medRxiv*. 2021:2021.2005.2005.21256716.https://doi.org/10.1101/2021.05.05.21256716
- 230. Bar-On YM, Goldberg Y, Mandel M, et al. Protection Across Age Groups of BNT162b2 Vaccine Booster against Covid-19. *medRxiv*. 2021:2021.2010.2007.21264626.https://doi.org/10.1101/2021.10.07.21264626
- 231. Bar-On YM, Goldberg Y, Mandel M, et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMoa2114255
- 232. Patalon T, Gazit S, Pitzer VE, Prunas O, Warren JL, Weinberger DM. Short Term Reduction in the Odds of Testing Positive for SARS-CoV-2; a Comparison Between Two Doses and Three doses of the BNT162b2 Vaccine. *medRxiv*. 2021:2021.2008.2029.21262792.https://doi.org/10.1101/2021.08.29.21262792
- 233. Iketani S, Liu L, Nair MS, et al. A third COVID-19 vaccine shot markedly boosts neutralizing antibody potency and breadth. *medRxiv*. 2021:2021.2008.2011.21261670.https://doi.org/10.1101/2021.08.11.21261670
- 234. Atmar RL, Lyke KE, Deming ME, et al. Heterologous SARS-CoV-2 Booster Vaccinations – Preliminary Report. *medRxiv*. 2021:2021.2010.2010.21264827.
 https://doi.org/10.1101/2021.10.10.21264827
- 235. Yorsaeng R, Suntronwong N, Phowatthanasathian H, et al. Immunogenicity of a third dose viral-vectored COVID-19 vaccine after receiving two-dose inactivated vaccines in healthy adults. *medRxiv*. 2021:2021.2009.2016.21263692.https://doi.org/10.1101/2021.09.16.21263692
- 236. Keskin AU, Bolukcu S, Ciragil P, Topkaya AE. SARS-CoV-2 specific antibody responses after third CoronaVac or BNT162b2 vaccine following two-dose CoronaVac vaccine regimen. *J Med Virol.* 2021.https://doi.org/10.1002/jmv.27350

- 237. Walsh EE, Frenck RW, Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. *New England Journal of Medicine*. 2020;383(25):2439-2450.https://doi.org/10.1056/NEJMoa2027906
- 238. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. *New England Journal of Medicine*. 2020.
- 239. Anderson EJ, Rouphael NG, Widge AT, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. *New England Journal of Medicine*. 2020;383(25):2427-2438.https://doi.org/10.1056/NEJMoa2028436
- 240. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. *The Lancet*. 2020;396(10267):1979-1993. https://doi.org/10.1016/S0140-6736(20)32466-1
- 241. Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1–2a trial of Ad26. COV2. S Covid-19 vaccine. *New England Journal of Medicine*. 2021;384(19):1824-1835.
- 242. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. *The Lancet Infectious Diseases*. 2021;21(1):39-51.https://doi.org/10.1016/S1473-3099(20)30831-8
- 243. Karamese M, Tutuncu EE. The effectiveness of inactivated SARS-CoV-2 vaccine (CoronaVac) on antibody response in participants aged 65 years and older. *Journal of Medical Virology*. 2021.https://doi.org/10.1002/jmv.27289
- 244. Angkasekwinai N, Sewatanon J, Niyomnaitham S, et al. Safety and Immunogenicity of CoronaVac and ChAdOx1 Against the SARS-CoV-2 Circulating Variants of Concern (Alpha, Delta, Beta) in Thai Healthcare Workers. *medRxiv*. 2021:2021.2010.2003.21264451.https://doi.org/10.1101/2021.10.03.21264451
- 245. Tada T, Zhou H, Dcosta BM, et al. Neutralization of Mu and C.1.2 SARS-CoV-2 Variants by Vaccine-elicited Antibodies in Individuals With and Without Previous History of Infection. bioRxiv. 2021:2021.2010.2019.463727.https://doi.org/10.1101/2021.10.19.463727
- 246. Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel 33 U.S. Sites, January–March 2021. MMWR Morbidity and mortality weekly report. 2021;70(20):753–758.https://doi.org/http://dx.doi.org/10.15585/mmwr.mm7020e2external
- 247. Vasileiou E, Simpson CR, Shi T, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. *The Lancet*. 2021;397(10285):1646-1657.https://doi.org/10.1016/S0140-6736(21)00677-2
- 248. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. *The Lancet.* 2021;397(10277):881-891.https://doi.org/10.1016/S0140-6736(21)00432-3
- 249. Hitchings MDT, Ranzani OT, Scaramuzzini Torres MS, et al. Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: A test-negative case-control study. *medRxiv*. 2021:2021.2004.2007.21255081.https://doi.org/10.1101/2021.04.07.21255081

- 250. El Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. *New England Journal of Medicine*. 2021.https://doi.org/10.1056/NEJMoa2113017
- 251. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. *N Engl J Med.* 2021;384(23):2187-2201.https://doi.org/10.1056/NEJMoa2101544
- 252. Vacharathit V, Aiewsakun P, Manopwisedjaroen S, et al. SARS-CoV-2 variants of concern exhibit reduced sensitivity to live-virus neutralization in sera from CoronaVac vaccinees and naturally infected COVID-19 patients. *medRxiv*. 2021:2021.2007.2010.21260232.https://doi.org/10.1101/2021.07.10.21260232
- Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. *medRxiv*.
 2021:2021.2010.2005.21264567.https://doi.org/10.1101/2021.10.05.21264567
- 254. Thompson MG, Burgess JL, Naleway AL, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers Eight U.S. Locations, December 2020–March 2021. MMWR Morbidity and mortality weekly report. 2021;70(13):495-500.https://doi.org/10.15585/mmwr.mm7013e3external
- 255. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. *Nat Commun.* 2021;12(1):3991.https://doi.org/10.1038/s41467-021-24285-4
- 256. Moderna. Moderna COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa. 2021. https://investors.modernatx.com/node/10841/pdf
- 257. Jeewandara C, Aberathna IS, Pushpakumara PD, et al. Antibody and T cell responses to Sinopharm/BBIBP-CorV in naïve and previously infected individuals in Sri Lanka. *medRxiv*. 2021;2021,2007,2015,21260621.https://doi.org/10.1101/2021.07.15.21260621
- 258. Fernández J, Bruneau N, Fasce R, et al. Neutralization of alpha, gamma, and D614G SARS-CoV-2 variants by CoronaVac vaccine-induced antibodies. *Journal of Medical Virology*. 2021.https://doi.org/10.1002/jmv.27310
- 259. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. *Nature Communications*. 2021;12(1).https://doi.org/10.1038/s41467-021-24285-4
- 260. Thomas SJ, Moreira ED, Kitchin N, et al. Six Month Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. *medRxiv*. 2021:2021.2007.2028.21261159.https://doi.org/10.1101/2021.07.28.21261159
- 261. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. *New England Journal of Medicine*. 2021;384(20):1885-1898.https://doi.org/10.1056/NEJMoa2102214
- 262. Jongeneelen M, Kaszas K, Veldman D, et al. Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. *bioRxiv*. 2021:2021.2007.2001.450707.https://doi.org/10.1101/2021.07.01.450707
- 263. Tada T, Zhou H, Samanovic MI, et al. Comparison of Neutralizing Antibody Titers Elicited by mRNA and Adenoviral Vector Vaccine against SARS-CoV-2 Variants. bioRxiv. 2021:2021.2007.2019.452771.https://doi.org/10.1101/2021.07.19.452771

- Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine 264. against the B.1.351 Variant. New England Journal of Medicine. 2021;384(20):1899-1909.https://doi.org/10.1056/NEJMoa2103055
- Buntz B. AstraZeneca, Pfizer Moderna vaccines fare well against Beta, Gamma and 265. Delta variants in study. Drug Discovery & Development. https://www.drugdiscoverytrends.com/astrazeneca-pfizer-moderna-vaccines-farewell-against-beta-gamma-and-delta-variants-in-study/. Published 2021. Updated 23 July 2021. Accessed 9 September, 2021.
- Choi A, Koch M, Wu K, et al. Serum Neutralizing Activity of mRNA-1273 against 266. SARS-CoV-2 Variants. bioRxiv. 2021:2021.2006.2028.449914.https://doi.org/10.1101/2021.06.28.449914
- Clemens SAC, Folegatti PM, Emary KRW, et al. Efficacy of ChAdOx1 nCoV-19 267. (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun. 2021;12(1):5861.https://doi.org/10.1038/s41467-021-25982-w
- 268. Wall EC, Wu M, Harvey R, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet. 2021;397(10292):2331-2333.https://doi.org/10.1016/S0140-6736(21)01290-3
- 269. Chagla Z. The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose. Annals of Internal Medicine. 2021;174(2):JC15.https://doi.org/10.7326/ACPJ202102160-015
- Formica N, Mallory R, Albert G, et al. Evaluation of a SARS-CoV-2 Vaccine NVX-270. CoV2373 in Younger and Older Adults. medRxiv. 2021;2021,2002,2026,21252482,https://doi.org/10.1101/2021.02.26,21252482

