

# Literature screening report

# COVID-19 vaccines in the WHO's Emergency Use Listing (EUL) Report (6)

| Sabina Rodriguez Velásquez* <sup>A,B</sup>                                    |
|-------------------------------------------------------------------------------|
| Gabriela Guizzo Dri* <sup>A,B</sup>                                           |
| Muaamar Al Gobari <sup>B,C</sup>                                              |
| Sara Botero-Mesa <sup>A,B</sup>                                               |
| Olivia Keiser <sup>A</sup>                                                    |
| <sup>A</sup> Institute of Global Health, University of Geneva, Switzerland    |
| <sup>B</sup> Association Actions en Santé Publique (ASP) & The GRAPH Network, |
| <sup>c</sup> Department of Occupational and Environmental Health, Center for  |
| Primary Care and Public Health (Unisanté), University of Lausanne,            |
| Epalinges-Lausanne, Switzerland.                                              |
|                                                                               |

| Solution contact. Solution (Solution) | Coordination contact: | Jorgen Bauwens (SSPH+) |
|---------------------------------------|-----------------------|------------------------|
|---------------------------------------|-----------------------|------------------------|

### Abstract

This report focuses on the World Health Organization's (WHO) Emergency Use Listing (EUL) of authorized vaccines as of 15 October 2021. Currently six vaccines are authorised for emergency use: BNT162b2/COMIRNATY (Pfizer-BioNTech, USA), Spikevax/Moderna USA), Vaxzevria/ChAdOx1 COVID-19 Vaccine/ mRNA-1273 (Moderna. nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP-CorV (China), and Sinovac/CoronaVac (China). This report provides a condensed summary concerning vaccine efficacy, safety, protection against variants, and further important information for each vaccine, in the form of a synoptic table. The information and data in this synoptic table was extracted from phase III clinical trials and from observational studies. This report particularly focuses on the latest data on vaccine effectiveness, duration of protection and waning immunity, booster doses, efficacy and safety of NVX-CoV2372, and myocarditis.





## Content

| Abstract                                           | 1  |
|----------------------------------------------------|----|
| Content                                            | 2  |
| Preamble                                           | 3  |
| Background                                         | 3  |
| Methodology                                        | 4  |
| Results                                            | 4  |
| Latest Data on Vaccine Effectiveness               | 4  |
| Duration of Protection and Waning Immunity         | 6  |
| Protection of Booster Doses Across Age Groups      | 8  |
| New Data on Efficacy and Safety of Novavax Vaccine | 9  |
| Synoptic Table                                     | 11 |
| General Vaccine Information                        | 11 |
| Effectiveness                                      | 13 |
| Effectiveness Against Variants                     | 16 |
| Effectiveness Against Hospitalization              | 20 |
| Safety And Adverse Events                          | 21 |
| Transmission, Prevention & Protection              | 27 |
| Children Vaccination                               | 33 |
| Heterologous Vaccination                           | 36 |
| Booster Doses                                      | 39 |
| Annexes                                            | 49 |
| Further Information                                | 49 |
| Efficacy                                           | 50 |
| Efficacy Against Variants                          | 51 |
| Phase III Trials Results                           | 54 |
| Phase III Trial Other                              | 56 |
| Vaccine Production Sites                           | 57 |
| References                                         | 60 |
|                                                    |    |



### Preamble

A large number of scientific publications become available on a daily basis, reflecting the rapid development of knowledge and progress of science on COVID-19 related issues. Leading authorities should base decisions or policies on this knowledge; hence they need to master the actual state of this knowledge. Due to the large number of publications shared daily, decision makers heavily depend on accurate summaries of these publications, in the different public health domains. Therefore, the authors of this report were mandated by the Swiss School of Public Health plus (SSPH+), upon request of the Federal Office of Public Health (FOPH), to inform the FOPH on recent findings from the literature.

#### Background

According to the current global data on vaccinations, 48% of the world populations, of which only 2.5% of people in low-income countries, have received at least one dose of a marketed COVID-19 vaccine as of 15 October 2021<sup>1</sup>. Currently, six vaccines [namely, Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA). Vaxzevria/ChAdOx1 nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP- CorV (China), and Sinovac/CoronaVac (China)] were assessed and granted an authorization by WHO as of 29 September 2021. Articles regarding the latest data on vaccine effectiveness, vaccine effectiveness against hospitalization, booster doses protection across different age groups, new data on the duration of protection and waning immunity, the efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico, and data on myocarditis were prioritized during the literature search and are the latest additions to the table. Data from clinical trials and observational studies for the six EUL-accepted vaccines and the vaccine candidate Novavax regarding these highlighted topics were summarized and can be found in the synoptic table below.

<sup>&</sup>lt;sup>1</sup> https://ourworldindata.org/covid-vaccinations (accessed on 15.10.2021).

Weiversität Bosel Universität Universität B SUPSI 

A Foundation of Swiss Universities

### Methodology

We screened the data for the EUL-accepted vaccines and the vaccine candidate Novavax as of 15 October 2021 from PubMed, Embase, medRxiv, bioRxiv, Cochrane, and clinical trials databases such as ClinicalTrials and WHO Trial Registry. The methods used were reported previously and can be found in prior reports<sup>2</sup>.

### Results

As phase III COVID-19 vaccine trials confirmed vaccine efficacy and safety for all six WHO EUL authorized vaccines, and as the share of fully vaccinated people begin to increase across countries, it is important to assess vaccine effectiveness in real-world conditions, especially in relation to evolving variants of concern (VOC).

#### Latest Data on Vaccine Effectiveness

There have not been substantial updates on vaccine effectiveness studies since the previous synoptic table's (30 September 2021) publication. Recently published studies continue to report waning mRNA vaccine protection over time<sup>3</sup> (i.e. **BNT162b2**: VE declined from **93.6%** in May to **65.8%** in July<sup>4</sup>; **mRNA-1273**: VE declined from to **94.1%** 14-60 days after vaccination to **80.0%** 151-180 days after vaccination<sup>5</sup>) and

<sup>&</sup>lt;sup>5</sup> Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.09.29.21264199v1.full.pdf+html</u>



A Foundation of Swiss Universities Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

<sup>&</sup>lt;sup>2</sup> COVID-19 vaccines: efficacy and safety (Literature Review 1). Swiss School of Public Health. <u>https://www.bag.admin.ch/dam/bag/de/dokumente/mt/k-und-i/aktuelle-ausbrueche-pandemien/2019-nCoV/Literaturrecherchen/literaturrecherchen\_covid-19-impfstoffe\_20210209.pdf.download.pdf/20210209\_Literaturrecherchen\_Covid-19-Impfstoffe\_EN.pdf</u>

<sup>&</sup>lt;sup>3</sup> mRNA vaccine effectiveness against asymptomatic SARS-CoV-2 infections over a seven-month period. Infection Control & Hospital Epidemiology. <u>https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/mrna-vaccine-effectiveness-against-asymptomatic-sarscov2-infection-over-a-sevenmonth-period/0B67BE1950C88E93B73C15F75E2FC497</u>

<sup>&</sup>lt;sup>4</sup> COVID-19 vaccine effectiveness by product and timing in New York State. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.08.21264595v1.full-text



against the Delta variant<sup>6,7</sup>. See summary paragraph and the synoptic table below for more in-depth information on waning vaccine immunity<sup>8,9,10,11,12</sup>. While both mRNA vaccines demonstrate reduced effectiveness levels, Moderna's mRNA-1273 vaccine has continued to demonstrate higher effectiveness levels<sup>13</sup> and reduced number of breakthrough infections<sup>14</sup> than Pfizer-BioNTech's BNT162b2 vaccine. However, one Belgian study demonstrated that the BNT162b2 vaccine had higher vaccine effectiveness against onwards transmission (**62%; 95% CI, 57-67**) than the mRNA-1273 vaccine (**52%; 95% CI, 33-69**)<sup>15</sup>.

A pre-print reported the mRNA-1273 vaccine demonstrated higher effectiveness levels against the Mu (B.1.621) variant of concern (**90.4%** (95% CI, 73.9-96.5) than the Delta variant (**86.7%** (95% CI, 84.3-88.7).<sup>16</sup>

The latest vaccine effectiveness data on AstraZeneca's ChadOx1 nCoV-19/Vaxzevria (VE of **53%** (95% CI, 12-84) in June)<sup>17</sup> or Ad26.COV2.S Janssen vaccines (VE

<sup>9</sup> Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.09.29.21264199v1</u>

<sup>&</sup>lt;sup>17</sup> Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of Belgian contact tracing data, January-June 2021. Vaccine. <u>https://www.sciencedirect.com/science/article/pii/S0264410X21011087?via%3Dihub</u>



A Foundation of Swiss Universities

<sup>&</sup>lt;sup>6</sup> Transmission event of SARS-CoV-2 delta variant reveals multiple vaccine breakthrough infections. *BMC Medicine*. <u>https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-021-02103-4</u>

<sup>&</sup>lt;sup>7</sup> The impact of SARS-CoV-2 vaccination on Alpha & Delta variant transmission. medRxiv. <u>https://www.medrxiv.org/content/10.1101/2021.09.28.21264260v1</u>

<sup>&</sup>lt;sup>8</sup> Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMoa2114114?guery=featured\_home

<sup>&</sup>lt;sup>10</sup> Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. *The Lancet*. <u>https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02183-8/fulltext</u>

<sup>&</sup>lt;sup>11</sup> mRNA vaccine effectiveness against asymptomatic SARS-CoV-2 infections over a seven-month period. Infection Control & Hospital Epidemiology. <u>https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/mrna-vaccine-effectiveness-against-asymptomatic-sarscov2-infection-over-a-sevenmonth-period/0B67BE1950C88E93B73C15F75E2FC497</u>

<sup>&</sup>lt;sup>12</sup> COVID-19 vaccine effectiveness by product and timing in New York State. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.10.08.21264595v1</u>

<sup>&</sup>lt;sup>13</sup> Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. *The Lancet.* <u>https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02183-8/fulltext</u>

<sup>&</sup>lt;sup>14</sup> A retrospective analysis of COVID-19 mRNA vaccine breakthrough infections – Risk factors and vaccine effectiveness. medRxiv. <u>https://www.medrxiv.org/content/10.1101/2021.10.05.21264583v1</u>

<sup>&</sup>lt;sup>15</sup> Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of Belgian contact tracing data, January-June 2021. Vaccine. <u>https://www.sciencedirect.com/science/article/pii/S0264410X21011087?via%3Dihub</u>

<sup>&</sup>lt;sup>16</sup> Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.09.29.21264199v1

decreased from **89.4%** [1 May] to **51.7%** [10 July])<sup>18</sup> corroborate previously reported data on waning vaccine protection.

Effectiveness data on Sinopharm's BBIBP-CorV and Sinovac's CoronaVac remains scarce. A recent study highlighted that the BBIBP-CorV vaccine induced high levels of IgG anti-spike antibodies (GMC: **377.0 IU/ml**; 95% CI, 324.3-438.3) in SARS-CoV-2 naïve individuals, however antibody (GMC) concentrations reduced to **125.4 IU/ml** (95% CI, 88.2-178.4) three months after receiving the second dose (most individuals received their second dose 54 days after their first dose and not the suggested 21 days apart)<sup>19</sup>. The authors did not specify which SARS-CoV-2 lineage was utilised. Another neutralizing antibody titre (NAb) quantification study demonstrated that the CoronaVac vaccine could not effectively neutralise variants of concern, particularly the delta variant, advocating for the administration of a third CoronaVac or heterologous vaccine dose to maintain long-term immunity against SARS-CoV-2<sup>20</sup>. Although both inactivated virus studies only analysed neutralization level data and not vaccine effectiveness, neutralization levels against SARS-CoV-2 assays have been shown to be highly predictive of immune protection against symptomatic SARS-CoV-2 infection<sup>21</sup>.

Despite reports of reduced effectiveness against SARS-Cov-2 infection, vaccine effectiveness remains high against severe infection, hospitalization, and death for all vaccines. Further vaccine effectiveness data can be found in the synoptic table below.

#### **Duration of Protection and Waning Immunity**

The waning immunity of vaccine protection against SARS-CoV-2 infection and COVID-19 disease remains a concern, especially when trying to control and contain

<sup>&</sup>lt;sup>21</sup> Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. *Nature*. <u>https://www.nature.com/articles/s41591-021-01377-8#citeas</u>



<sup>&</sup>lt;sup>18</sup> COVID-19 vaccine effectiveness by product and timing in New York State. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.10.08.21264595v1</u>

<sup>&</sup>lt;sup>19</sup> Humoral response to the BBIBP-CoRV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.10.02.21264432v1.full.pdf</u>

<sup>&</sup>lt;sup>20</sup> CoronaVac induces lower neutralising activity against variants of concern than natural infection. *The Lancet Infectious Diseases*. <u>https://www.sciencedirect.com/science/article/pii/S1473309921005685?via%3Dihub</u>



the ongoing COVID-19 pandemic. Two longitudinal studies examining the waning immunity of the BNT162b2 vaccine provide insightful data on the longitudinal dynamics of the immune response to the vaccine. The first study was conducted over a period of 6 months in which vaccinated health care workers were tested monthly for the presence of anti-spike IgG and neutralizing antibodies<sup>22</sup>. Based on the results, six months after receipt of the second dose of the BNT162b2 vaccine, humoral response substantially decreased, especially among men, among persons 65 years of age or older, and among persons with immunosuppression. Similar results were reported in the second study in which a test-negative, case-control study design was used to estimate the vaccine effectiveness against any SARS-CoV-2 infection and Covid-19 disease in Qatar<sup>23</sup>. The results demonstrated that the BNT162b2-induced protection against SARS-CoV-2 infection appeared to wane rapidly following its peak after second dose, but protection against hospitalization and death persisted at robust level for 6 months after the second dose.

Since the roll-out of COVID-19 vaccines such as mRNA (BNT162b2, mRNA-1273), adenoviral virus (ChAdOx1 nCoV-19), and inactivated virus vaccines (CoronaVac, Sinopharm), concerns regarding the duration of protection and waning immunity have emerged, especially when aiming to compare vaccine platforms. A study seeking to address the duration of protection and waning immunity of BNT162b2, ChAdOx1 nCoV-19, and CoronaVac in younger and older age groups, comparatively analysed the spike RBD IgG antibody titers in those three vaccine platforms<sup>24</sup>. When comparing the three different vaccine types, the BNT162b2 induced the highest overall seropositivity and anti-spike RBD IgG antibody levels in both younger and older age groups, followed by ChAdOx1, and then by CoronaVac vaccine. In regards of the rate

<sup>&</sup>lt;sup>24</sup> Longitudinal comparison of SARS-CoV-2 anti-Spike RBD IgG antibody response after CoronaVac, BNT162b2, ChAdOx1 nCoV-19 vaccines and evaluation of a single booster dose of BNT162b2 or CoronaVac after a primary CoronaVac regimen. SSRN – Preprint. <u>https://papers.ssrn.com/sol3/papers.cfm?abstract\_id=3929973</u>



A Foundation of Swiss Universities

<sup>&</sup>lt;sup>22</sup> Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. *NEJM.* <u>https://www.nejm.org/doi/full/10.1056/NEJMoa2114583?query=featured\_home</u>

<sup>&</sup>lt;sup>23</sup> Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. NEJM. https://www.nejm.org/doi/full/10.1056/NEJMoa2114114

of declining antibodies, the CoronaVac group had the fastest decline followed by ChAdOx1, and then by BNT162b2.

Another study aiming to understand the duration of protection and waning immunity, analysed the humoral response to the BBIBP-CorV (Sinopharm) vaccine over time in healthcare workers with or without exposure to SARS-CoV-2<sup>25</sup>. Based on those results, three months after the second dose individuals with SARS-CoV-2 exposure prior to vaccination and individuals without prior exposure showed a decline in antibody levels, being more abrupt in unexposed subjects. Overall, the results showed a trend towards lower antibody concentrations over time following BBIBP-CorV vaccination.

#### Protection of Booster Doses across age groups

Earlier this month of October, the European Medicines Agency (EMA) released their recommendations on extra doses and boosters<sup>26</sup>. Regarding the administration of extra doses, the EMA concluded that an extra dose of the COVID-19 vaccines Comirnaty (BioNTech/Pfizer) and Spikevax (Moderna) may be given to people with severely weakened immune systems, at least 28 days after their second dose. This conclusion was based on the multiple studies demonstrating the benefits of a third dose in immunocompromised individuals<sup>27,28</sup>. In terms of their recommendation for booster doses in populations with normal immune systems, the EMA concluded that booster doses of the Comirnaty vaccine may be considered at least 6 months after the second dose for people aged 18 years and older. Their decision only applies for the BioNTech/Pfizer COVID-19 vaccine, as the EMA is currently evaluating data to support a booster for Spikevax. Many of the decision regarding the administration of

<sup>&</sup>lt;sup>28</sup> Randomized Trial of a Third Dose of mRNA-1273 Vaccine in Transplant Recipients. NEJM. <u>https://www.nejm.org/doi/full/10.1056/NEJMc2111462</u>



A Foundation of Swiss Universities

<sup>&</sup>lt;sup>25</sup> Humoral response to the BBiBP-CorV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.10.02.21264432v1</u>

 <sup>&</sup>lt;sup>26</sup> Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. *EMA*.
 <u>https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters#\_ftnref1</u>
 <sup>27</sup> Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients. *NEJM*.

https://www.nejm.org/doi/full/10.1056/NEJMc2108861



booster doses rely on data from Israel where boosters started being offered to the whole population early on. One of the first studies to provide data on the protection of BNT162b2 against COVID-19 infections and severe illnesses was their study on the protection of the BNT162b2 vaccine booster against COVID-19 in 60-years-old and over<sup>29</sup>. The study demonstrated that a booster dose lowered the rate of confirmed infection and severe illness in older populations<sup>21</sup>, and their newest preprint on the protection of BNT162b2 vaccine booster against COVID-19 across age groups shows that the rate of confirmed infection and severe illness were substantially lowered among those who received a booster dose across all age groups<sup>30</sup>. Overall, the newest results on the protection of BNT162b2 vaccine booster show that confirmed infection rates were approximately 10-fold lower in the booster group compared to the nonbooster group (ranging from **8.8-17.6** for ≥12 days post booster administration and **4.8-11.2** for 3-7 days post booster administration across the five different age groups), while the severe illness rates were **18.7 fold** (95% CI, 15.7-22.4) ≥12 days post booster administration and 6.5-fold (95% CI, 5.1-8.3) lower 3-7 days post booster administration for ages 60 and over, and 22-fold (95% CI, 10.3-47.0) ≥12 days post booster administration and **3.2-fold** (95% CI, 1.1-9.6) lower 3-7 days post booster administration for ages 40-60<sup>10</sup>. In terms of COVID-19 associated death rates, for ages 60 and over, the rates were **14.7-fold** (95% CI, 9.4-23.1) ≥12 days post booster administration and 4.8-fold (95% CI, 2.8-8.2) lower 3-7 days post booster administration<sup>10</sup>.

#### New Data on Efficacy and Safety of Novavax Vaccine

The Novavax COVID-19 vaccine candidate is an adjuvant, recombinant S protein nanoparticle vaccine that has previously demonstrated clinical efficacy for prevention of COVID-19 in phase 2b/3 trials in the United Kingdom and South Africa. New results

 <sup>&</sup>lt;sup>29</sup> Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. *NEJM*. <a href="https://www.nejm.org/doi/full/10.1056/NEJMoa2114255">https://www.nejm.org/doi/full/10.1056/NEJMoa2114255</a>
 <sup>30</sup> Protection Across Age Groups of BNT162b2 Vaccine Booster against Covid-19. *medRxiv*. <a href="https://www.medrxiv.org/content/10.1101/2021.10.07.21264626v1">https://www.nejm.org/doi/full/10.1056/NEJMoa2114255</a>
 <sup>30</sup> Protection Across Age Groups of BNT162b2 Vaccine Booster against Covid-19. *medRxiv*. <a href="https://www.medrxiv.org/content/10.1101/2021.10.07.21264626v1">https://www.medrxiv.org/content/10.1101/2021.10.07.21264626v1</a>
 <sup>30</sup> Winversitian U
 <sup>booster</sup> U



from a phase 3, randomized, observer-blinded, placebo-controlled trial performed in the United States and Mexico evaluated the efficacy and safety of NVX-CoV2373 in adults over 18-years of age<sup>31</sup>. Based on the results, a vaccine efficacy of **90.4%** (95% CI: 82.9-94.6) and a vaccine efficacy against any variant of concern/interest (i.e., Alpha, Delta, Kappa) of **92.6%** (95% CI: 83.6-96.7) were reported. In terms of reactogenicity, most reported side effects or adverse events were mild-to-moderate and transient and mainly occurring in the NVX-CoV-2373 recipients and after the second dose. Overall, the Novavax COVID-19 vaccine candidate was well tolerated and demonstrated a high overall VE for prevention of COVID-19 where the most sequenced viral genomes were classified as variants of concern or interest.

Further (biweekly) updated data on the six WHO EUL vaccines and the vaccine candidate Novavax are synthesized in the synoptic table and new data has been highlighted in yellow.

<sup>31</sup> Efficacy and Safety of NVX-CoV2373 in the United States and Mexico. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.10.05.21264567v1





### Synoptic Table

Synoptic table about SARS-CoV-2 vaccines accepted in the WHO's Emergency Use Listing and Novavax Vaccine (as of 15 October 2021)

|                    |                                                     |                                                                           |                                                                                                  |                                                                        |                                  |                                  | AWAITING<br>APPROVAL FROM<br>WHO EUL                                             |
|--------------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------|
|                    | BNT162b2/<br>COMIRNATY<br>(Pfizer-BioNTech,<br>USA) | Spikevax/<br>Moderna COVID-<br>19 Vaccine/<br>mRNA-1273<br>(Moderna, USA) | Vaxzevria/<br>ChAdOx1 nCoV-<br>19/ AZD1222/<br>Covishield<br>(AstraZeneca/Oxf<br>ord, UK, India) | Janssen COVID-<br>19<br>vaccine/Johnson<br>& Johnson<br>(Janssen, USA) | Sinopharm/BBIB<br>P-CorV, China  | Sinovac<br>CoronaVac,<br>China   | Novavax/ NVX-<br>CoV2373                                                         |
|                    |                                                     |                                                                           | GENERAL VACCI                                                                                    | NE INFORMATION                                                         |                                  |                                  |                                                                                  |
| Platform           | mRNA-based<br>vaccine                               | mRNA-based<br>vaccine                                                     | Non-replicating<br>vector-based<br>vaccine                                                       | Non-replicating<br>vector-based<br>vaccine                             | Inactivated virus<br>(Vero cell) | Inactivated virus<br>(Vero cell) | Recombinant<br>protein<br>(nanoparticle)<br>vaccine with<br>Matrix-M<br>adjuvant |
| Dose and frequency | 2 doses, 21 days<br>apart                           | 2 doses, 28 days<br>apart                                                 | 2 doses, 4-12<br>weeks apart                                                                     | 1 dose, once<br>[Phase III trials<br>currently testing 2-              | 2 doses, 21 days<br>apart        | 2 doses, 14 days<br>apart        | 2 doses, 21<br>days apart                                                        |



A Foundation of Swiss Universities



SWISS SCHOOL OF 5. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                                          |                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                      | dose regime, 56<br>days apart] <sup>i</sup>                                                                                                      |                                                                                                                                                           |                                                                                                                                                |                                                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Target population                        | 12 years old and over                                                                                                                                           | 12 years old and over                                                                                                                            | 18 years old and over                                                                                                                                | 18 years old and over                                                                                                                            | 18 years old and over                                                                                                                                     | 18 years old and over                                                                                                                          | 18 years old and over                                                                           |
| Storage conditions                       | 2°C to 8 °C (for 1 month)                                                                                                                                       | 2°C to 8 °C (for 1 month)                                                                                                                        | 2°C until 8 °C                                                                                                                                       | 2°C to 8 °C (for 3 months)                                                                                                                       | 2°C until 8 °C                                                                                                                                            | 2°C until 8 °C                                                                                                                                 | 2°C to 8 °C                                                                                     |
| Approving<br>authorities                 | FDA (11.12.20) <sup>ii</sup> ;<br>EMA (21.12.20);<br>WHO EUL<br>(31.12.20); and list<br>of countries<br>(including<br>Switzerland –<br>approved on<br>20.12.20) | FDA (18.12.20);<br>EMA (06.01.21);<br>WHO EUL<br>(30.04.21); and list<br>of 51 countries<br>(including<br>Switzerland –<br>approved<br>12.01.21) | FDA (awaiting on<br>approval);<br>EMA (29.01.21);<br>WHO EUL<br>(15.02.21); and list<br>of 121 countries<br>(Switzerland<br>awaiting on<br>approval) | FDA (27.02.21);<br>EMA (11.03.21),<br>WHO EUL<br>(12.03.21), and list<br>of 59 countries<br>(including<br>Switzerland –<br>approved<br>22.03.21) | WHO EUL<br>(07.05.21); and list<br>of 55 countries<br>(e.g., Argentina,<br>Bahrain, Brazil,<br>China, Indonesia,<br>United Arab<br>Emirates,<br>Zimbabwe) | WHO EUL<br>(01.06.21), and list<br>of 33 countries<br>(e.g., Albania,<br>Chile, Egypt,<br>Hong Kong,<br>Malaysia, Tunisia,<br>Turkey, Ukraine) | Waiting on<br>approval<br>(Not-yet-<br>approved by<br>countries or<br>WHO for<br>emergency use) |
| Booster shot<br>approving<br>authorities | EMA approves<br>booster for those<br>aged 18 and<br>above, 6 months<br>after the 2 <sup>nd</sup> dose <sup>1</sup>                                              | EMA authorises<br>booster dose for<br>immunocompromi<br>sed individuals <sup>iv</sup><br>FDA approves a<br>third booster dose                    |                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                                |                                                                                                 |

<sup>i</sup> Johnson & Johnson Announces Real-World Evidence and Phase 3 Data Confirming Strong and Long-Lasting Protection of Single-Shot COVID-19 Vaccine in the U.S. Johnson & Johnson. <u>https://www.jnj.com/johnson-johnson-announces-real-world-evidence-and-phase-3-data-confirming-strong-and-long-lasting-protection-of-single-shot-covid-19-vaccine-in-the-u-s</u>

<sup>ii</sup> Pfizer-BioNTech's Comirnaty Vaccine received full FDA approval on 23 August 2021 for people age 16 and above, moving it beyond emergency use status. https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine

<sup>iv</sup> Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. *European Medicines Agency*.

https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters



A Foundation of Swiss Universities



|                              | FDA approves<br>booster for those<br>ages 16 and<br>above, 6 months<br>after the 2 <sup>nd</sup> dose <sup>iii</sup>                                                                                         | for individuals<br>older than 65 and<br>high-risk<br>individuals, 6<br>months after the<br>2 <sup>nd</sup> dose <sup>v</sup>                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                 |                                                                                         |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                                                              | EFFECT                                                                                                                                                                                                                  | IVENESS AGAINST                                                                                                                                                                              | ANY SARS-COV-2 II                                                                                                                                                                                                                                                              | FECTION                                |                                                                                                                                                                                                                                                                                                 |                                                                                         |
| Effectiveness<br>single dose | Generalpopulation:Against infection: $70\%^2$ . $77.6\%$ (95% CI, $70.9-82.7)^3$ $36.8\%$ (95% CI, $33.2-40.2$ ) [3weeks after firstdose] <sup>4</sup> Individuals $\geq 70$ :Symptomaticdisease: $58\%^5$ . | Generalpopulation:Symptomaticdisease: $60\%$ $(95\% CI, 57-64;$ >2 weeks afterdose) <sup>7</sup> . <sup>vii</sup> <b>88.9%</b> (95% CI,<br>78.7-94.2) <sup>3</sup> Individuals $\geq$ 70:<br>Symptomatic<br>disease:64% | Generalpopulation:Asymptomatic orsymptomaticdisease: $64\%$ ;Symptomaticdisease: $67\%^8$ .Individuals $\geq 70$ :Symptomaticdisease: $58\%^5$ .Hospitalizationrisk reduced by $35-45\%^5$ . | <b>50.6%</b> (95% CI,<br>14.0-74.0) in<br>preventing SARS-<br>CoV-2 infection<br>(<2 weeks after<br>dose);<br><b>76.7%</b> (95% CI,<br>30.3-95.3) in<br>preventing SARS-<br>CoV-2 infection<br>(>2 weeks after<br>dose) <sup>9</sup> .<br><b>79%</b> (95% CI, 77-<br>80) (when | Partial<br>protection <sup>14</sup> .× | <ul> <li>15.5% for<br/>preventing<br/>COVID-19; 37.4%<br/>for preventing<br/>hospitalization;<br/>44.7% for<br/>preventing<br/>admission to the<br/>ICU; and 45.7%<br/>for preventing of<br/>COVID-19 related<br/>death<sup>15</sup>.</li> <li>18.6% (95% CI,<br/>17.6-19.6) against</li> </ul> | Ongoing studies<br>in South Africa <sup>17</sup><br>and United<br>Kingdom <sup>18</sup> |

<sup>iii</sup> FDA authorizes booster dose of Pfizer-BioNTech COVID-19 vaccine for certain populations. *FDA News Release*. <u>https://www.fda.gov/news-events/press-</u> announcements/fda-authorizes-booster-dose-pfizer-biontech-covid-19-vaccine-certain-populations

corrected for

<sup>v</sup> F.D.A. Panel recommends booster for many Moderna vaccine recipients. *The New York Times*. <u>https://www.nytimes.com/2021/10/14/us/politics/fda-moderna-vaccine-boosters.html</u>

<sup>vii</sup> mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

(95% CI, 46-78;

<sup>x</sup> Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results.



A Foundation of Swiss Universities

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

SARS-CoV-2



swiss school of 15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

| Hospitalizar<br>reduced by<br><b>45%</b> <sup>5</sup> .<br>Risk of dea<br>reduced by<br><u>Individuals</u><br>≥14 days a<br>first dose: <b>5</b><br>(95% Cl, 47<br>effectivenes<br>against<br>hospitalizat<br>January-22<br>vi | 35- dose) <sup>7</sup> . <sup>viii</sup><br>th<br>54% <sup>5</sup> . $\frac{Individuals \ge 50:}{\ge 14 \text{ days after}}$<br>first dose: 54%<br>(95% CI, 47-61)<br>$\ge 50:$<br>fter against<br>hospitalization [1<br>January-22<br>June <sup>6</sup> .ix<br>ion [1 | under-recording,<br>VE was estimated<br>to be <b>69%</b> (95%<br>Cl, 67-71) <sup>10</sup> .<br><b>81%</b> (95% Cl, 79-<br>84) for preventing<br>hospitalization<br>when corrected for<br>under-recording,<br>VE was estimated<br>to be <b>73%</b> (95%<br>Cl, 69-76) <sup>10</sup> .<br><b>75%</b> (95% Cl, 65-<br>82) against severe<br>critical COVID-<br>19 <sup>11</sup> .<br><b>71%</b> (95% Cl, 56-<br>81) [11 March – | infection, <b>28.1%</b><br>(95% CI, 26.3-<br>29.9) against<br>hospitalization,<br><b>28.5%</b> (95% CI,<br>25.4-31.4) against<br>ICU admission,<br>and <b>29.4%</b> (95%<br>CI, 26.7.3-31.9)<br>against death<br>[January-April] <sup>16</sup> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

<sup>vi</sup> mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273). <sup>viii</sup> mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

ix mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).



A Foundation of Swiss Universities



SWISS SCHOOL OF 15. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                            | SARS-Cov-2                                                                                                                                                                                                                                                                                                                                                                   | SARS-Cov-2                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             | 68% (95% Cl, 50-<br>79) <sup>6</sup> .   |                                          | <b>65.9%</b> for                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Effectiveness of two doses | infection:<br>infection:<br>85% <sup>2</sup> .<br>94.6% <sup>19</sup> .<br>94.5% <sup>20</sup> .<br>76% (95% CI, 69-<br>81) [January-<br>July] <sup>21</sup> .<br>88.8% (95% CI,<br>84.6-91.8)<br>[December-May] <sup>3</sup><br>74% (95% CI, 72-<br>76) [January-<br>June] <sup>13</sup><br>77.5% (95% CI,<br>76.4-78.6) [first<br>month after<br>second dose] <sup>4</sup> | infection:         100% <sup>19</sup> .         86% (95% Cl, 81-         90.6) [January-         July] <sup>21</sup> .         96.3% (95% Cl, 81-         91.3-98.4)         [December-May] <sup>3</sup> 85% (95% Cl, 80-         90) [January-         June] <sup>13</sup> Symptomatic         disease:       91%         (95% Cl, 89-93;         >2 weeks after         dose) <sup>7</sup> . <sup>xiii</sup> | <u>SARS-CoV-2</u><br><u>infection</u> : <b>85%</b> ;<br><b>53%</b> (95% Cl, 12-<br>84) [January-<br>June] <sup>13</sup><br><u>Symptomatic</u><br><u>disease</u> : <b>90%</b> <sup>8</sup> . | Not Applicable<br>(one dose<br>schedule) | Partial<br>protection <sup>14</sup> .xvi | preventing<br>COVID-19; <b>87.5%</b><br>for preventing<br>hospitalization;<br><b>90.3%</b> for<br>preventing ICU<br>admission; and<br><b>86.3%</b> for<br>preventing<br>COVID-19 related<br>death <sup>15</sup> .xvii<br><b>52.7%</b> (95% CI,<br>52.1-53.4) against<br>SARS-CoV-2<br>infection, <b>72.8%</b><br>(95% CI, 71.8-<br>73.7) against<br>hospitalization,<br><b>73.8%</b> (95% CI,<br>72.2-75.2) against<br>ICU admission, | Ongoing studies<br>in South Africa <sup>17</sup><br>and United<br>Kingdom <sup>18</sup> |

<sup>xiii</sup> Results do not disaggregate between BNT162b2 and mRNA-1273.

<sup>xvi</sup> Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results.

xvii Death reports on fully vaccinated doctors (10 cases during June 2021 in Indonesia). It may be related to new variants [media report]. Indonesian Covid deaths add to questions over Sinovac vaccine. *The Guardian* [press release]. <u>https://www.theguardian.com/world/2021/jun/28/indonesian-covid-deaths-add-to-questions-over-sinovac-vaccine</u>



A Foundation of Swiss Universities



| January-22 June <sup>6</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xii 91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Asymptomatic<br>SARS-CoV-2<br>infection:<br>90.6% <sup>22</sup> . <sup>xi</sup><br>73.1 (95% CI,<br>70.3-75.5) <sup>4</sup><br><u>Hospitalization:</u><br>85% (95% CI, 73-<br>93) [January-<br>July] <sup>21</sup> .<br>88% (95% CI, 85-<br>91) [11 March –<br>15 August] <sup>12</sup> .<br>89% (95% CI, 87-<br>91) for individuals<br>≥50 years [1<br>January-22 June <sup>6</sup> .<br>xii | ≥50 years [1             |  | and <b>73.7%</b> (95%<br>CI, 72.3-75.0)<br>against death<br>[January-April] <sup>16</sup> |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|-------------------------------------------------------------------------------------------|--|
| xii 91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥50 years [1                                                                                                                                                                                                                                                                                                                                                                                  | - ,                      |  |                                                                                           |  |
| ≥50 years [1<br>January-22 June <sup>6</sup> . <b>89%</b> (95% CI, 87-<br>91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥50 years [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               | 95) [11 March –          |  |                                                                                           |  |
| 89% (95% CI, 87-<br>91) for individuals<br>≥50 years [1<br>January-22 June <sup>6</sup> .       95) [11 March –<br>15 August) <sup>12</sup> .         ×ii       89% (95% CI, 87-<br>91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89% (95% CI, 87-<br>91) for individuals<br>≥50 years [1       95) [11 March –<br>15 August) <sup>12</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 August] <sup>12</sup> .                                                                                                                                                                                                                                                                                                                                                                    | <b>93%</b> (95% Cl, 91-  |  |                                                                                           |  |
| 93% (95% Cl, 91-         89% (95% Cl, 87-         91) for individuals         ≥50 years [1         January-22 June <sup>6</sup> .         xii         91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93% (95% CI, 91-         95) [11 March –         91) for individuals         ≥50 years [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91) [11 March –                                                                                                                                                                                                                                                                                                                                                                               | ,                        |  |                                                                                           |  |
| 91) [11 March –       July] <sup>21</sup> .         15 August] <sup>12</sup> . <b>93%</b> (95% CI, 91- <b>93%</b> (95% CI, 87-       95) [11 March –         91) for individuals       95) [11 March – $\geq 50$ years [1       15 August) <sup>12</sup> .         January-22 June <sup>6</sup> . <b>89%</b> (95% CI, 87-         * <sup>xii</sup> 91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91) [11 March –<br>15 August] <sup>12</sup> .<br><b>89%</b> (95% CI, 87-<br>91) for individuals<br>≥50 years [1<br>July] <sup>21</sup> .<br><b>93%</b> (95% CI, 91-<br>95) [11 March –<br>15 August) <sup>12</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                               |                          |  |                                                                                           |  |
| 88% (95% Cl, 85-<br>91) [11 March –<br>15 August] <sup>12</sup> .       81-97) [January-<br>July] <sup>21</sup> .         93% (95% Cl, 91-<br>93% (95% Cl, 91-<br>95) [11 March –<br>15 August) <sup>12</sup> .         ≥50 years [1<br>January-22 June <sup>6</sup> .         ×ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>88% (95% CI, 85-<br/>91) [11 March –<br/>15 August]<sup>12</sup>.</li> <li>89% (95% CI, 87-<br/>91) for individuals<br/>≥50 years [1</li> <li>81-97) [January-<br/>July]<sup>21</sup>.</li> <li>93% (95% CI, 91-<br/>95) [11 March –<br/>15 August)<sup>12</sup>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , -                                                                                                                                                                                                                                                                                                                                                                                           |                          |  |                                                                                           |  |
| July] <sup>21</sup> .       91.6% (95% Cl,         88% (95% Cl, 85-       81-97) [January-         91) [11 March –       July] <sup>21</sup> .         15 August] <sup>12</sup> .       93% (95% Cl, 91-         93% (95% Cl, 87-       95) [11 March –         91) for individuals       15 August) <sup>12</sup> .         ≥50 years [1       January-22 June <sup>6</sup> .         xii       89% (95% Cl, 87-         91) for individuals       15 August) <sup>12</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | July] <sup>21</sup> . <b>91.6%</b> (95% CI, <b>88%</b> (95% CI, 85-       81-97) [January-         91) [11 March -       July] <sup>21</sup> .         15 August] <sup>12</sup> . <b>93%</b> (95% CI, 91- <b>93%</b> (95% CI, 87-       95) [11 March -         91) for individuals $>50$ years [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                          |  |                                                                                           |  |
| 93) [January-<br>July] <sup>21</sup> .       Hospitalization:<br>91.6% (95% Cl,<br>88% (95% Cl, 85-<br>91) [11 March -<br>15 August] <sup>12</sup> .         93% (95% Cl, 91-<br>93% (95% Cl, 91-<br>93% (95% Cl, 91-<br>95) [11 March -<br>95) [11 March -<br>15 August] <sup>12</sup> .         93% (95% Cl, 91-<br>95) [11 March -<br>15 August] <sup>12</sup> . $\geq$ 50 years [1<br>January-22 June <sup>6</sup> . $\approx$ 99% (95% Cl, 87-<br>91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93) [January-<br>July] <sup>21</sup> .       Hospitalization:<br>91.6% (95% Cl,<br>88% (95% Cl, 85-<br>91) [11 March –<br>15 August] <sup>12</sup> .         93% (95% Cl, 91-<br>93% (95% Cl, 91-<br>95) [11 March –<br>15 August] <sup>12</sup> .         93% (95% Cl, 91-<br>95) [11 March –<br>15 August) <sup>12</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hospitalization:                                                                                                                                                                                                                                                                                                                                                                              |                          |  |                                                                                           |  |
| Hospitalization:       August] <sup>23</sup> 85% (95% Cl, 73-<br>93) [January-<br>July] <sup>21</sup> .       Hospitalization:         93) [January-<br>July] <sup>21</sup> .       91.6% (95% Cl,<br>81-97) [January-<br>July] <sup>21</sup> .         88% (95% Cl, 85-<br>91) [11 March –<br>15 August] <sup>12</sup> .       81-97) [January-<br>July] <sup>21</sup> .         89% (95% Cl, 87-<br>91) for individuals<br>≥50 years [1<br>January-22 June <sup>6</sup> .       93% (95% Cl, 87-<br>91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hospitalization:       August] <sup>23</sup> $85\%$ (95% Cl, 73-       Hospitalization:         93) [January-       Hospitalization:         July] <sup>21</sup> .       91.6% (95% Cl, $88\%$ (95% Cl, 85-       81-97) [January-         91) [11 March -       July] <sup>21</sup> .         15 August] <sup>12</sup> .       93% (95% Cl, 91-         91) for individuals       95) [11 March -         91) for individuals       95) [11 March -         >50 years [1       15 August) <sup>12</sup> .                                                                                                                                                                                                                                                                                                                  | <u>(0.3-75.5)'</u>                                                                                                                                                                                                                                                                                                                                                                            |                          |  |                                                                                           |  |
| Hospitalization:       78) [January-<br>August]23         85% (95% Cl, 73-<br>93) [January-<br>July]21.       91.6% (95% Cl,<br>88% (95% Cl, 85-<br>91) [11 March –<br>15 August]12.         89% (95% Cl, 87-<br>91) for individuals<br>≥50 years [1<br>January-22 June <sup>6</sup> .       93% (95% Cl, 87-<br>91) for individuals         ****       89% (95% Cl, 87-<br>91) for individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hospitalization:       78) [January-<br>August]^{23}         85% (95% Cl, 73-<br>93) [January-<br>July]^{21}.       Hospitalization:         93. [January-<br>July]^{21}.       91.6% (95% Cl,<br>81-97) [January-<br>July]^{21}.         88% (95% Cl, 85-<br>91) [11 March –<br>15 August]^{12}.       81-97) [January-<br>July]^{21}.         89% (95% Cl, 87-<br>91) for individuals<br>$\geq 50$ years [1       93% (95% Cl, 91-<br>95) [11 March –<br>15 August)^{12}.                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                               | <b>749</b> / (059/ CL 64 |  |                                                                                           |  |
| $70.3-75.5$ ) <sup>4</sup> $71\% (95\% Cl, 61-78) [January-August]^{23}$ $Hospitalization:$ $August]^{23}$ $85\% (95\% Cl, 73-93) [January-91, 600 (95\% Cl, 85-93) [January-91, 11 March - 15 August]^{12}.       Hospitalization: 93\% (95\% Cl, 85-91) [January-93\% (95\% Cl, 91-95) [11 March - 15 August]^{12}.       93\% (95\% Cl, 91-95) [11 March - 15 August]^{12}.         950 (95\% Cl, 87-95) [11 March - 15 August]^{12}.       95\% (95\% Cl, 87-95) [11 March - 15 August]^{12}.         >50 (9ars [1]) January-22 June6.       89\% (95\% Cl, 87-95) [15 March - 15 August]^{12}.         >50 (9ars [1]) January-22 June6.       89\% (95\% Cl, 87-95) [15 March - 15 August]^{12}.   $                                                                                                                                                                                                                                                                                                               | $70.3-75.5)^4$ $71\% (95\% Cl, 61-78) [January-78) [January-4000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>90.6%</b> <sup>22</sup> .xi                                                                                                                                                                                                                                                                                                                                                                |                          |  |                                                                                           |  |
| 90.6% <sup>22, xiv</sup> 90.6% <sup>22, xiv</sup> 73.1 (95% CI,<br>70.3-75.5) <sup>4</sup> 71% (95% CI, 61-<br>78) [January-<br>August] <sup>23</sup> 85% (95% CI, 73-<br>93) [January-<br>July] <sup>21</sup> .       4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.6% $^{22}$ ,xi90.6% $^{22}$ ,xiv73.1 (95% CI,<br>70.3-75.5)471% (95% CI, 61-<br>78) [January-<br>August]^23Hospitalization:<br>85% (95% CI, 73-<br>93) [January-<br>July]^21.Hospitalization:<br>91.6% (95% CI,<br>88% (95% CI, 85-<br>91) [11 March -<br>15 August]^12.89% (95% CI, 87-<br>91) for individuals<br>$\geq 50$ years [193.6% (95% CI, 91-<br>95) [11 March -<br>15 August)^12.                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                               |                          |  |                                                                                           |  |
| infection:       Infection:       [January-April] <sup>16</sup> 90.6% <sup>22</sup> .xiv       90.6% <sup>22</sup> .xiv       90.6% <sup>22</sup> .xiv         73.1 (95% CI,       71% (95% CI, 61-         70.3-75.5) <sup>4</sup> 71% (95% CI, 61-         78) [January-       August] <sup>23</sup> 85% (95% CI, 73-       93) [January-         93) [January-       Hospitalization:         July] <sup>21</sup> .       91.6% (95% CI, 85-         91) [J1 March -       15.August] <sup>12</sup> .         93% (95% CI, 87-       95) [11 March -         91) for individuals       15 August] <sup>12</sup> .         >50 years [1       39% (95% CI, 87-         91) for individuals       89% (95% CI, 87-         91) for individuals       95% (1, 87-         91) for individuals       95% (1, 87-         91) for individuals       95% (1, 87-         91) for individuals       15 August] <sup>12</sup> .         × <sup>xii</sup> 91% (95% CI, 87-         91% (95% CI, 87-       91) for individuals | infection:       infection:       [January-April] <sup>16</sup> 90.6% <sup>22</sup> , xiv       90.6% <sup>22</sup> , xiv         73.1 (95% Cl,       71% (95% Cl, 61-         70.3-75.5) <sup>4</sup> 71% (95% Cl, 61-         70.3 (January-       August] <sup>23</sup> 85% (95% Cl, 73-       91.6% (95% Cl, 85-         93) [January-       July] <sup>21</sup> .         91) [11 March –       July] <sup>21</sup> .         15 August] <sup>12</sup> .       93% (95% Cl, 91-         91) for individuals       >50 years [1                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                               |                          |  |                                                                                           |  |
| SARS-CoV-2<br>infection:       SARS-CoV-2<br>infection:       against death<br>[January-April] <sup>16</sup> 90.6% <sup>22</sup> , <sup>xiv</sup> 90.6% <sup>22</sup> , <sup>xiv</sup> 73.1 (95% CI,<br>70.3-75.5) <sup>4</sup> 71% (95% CI, 61-<br>78) [January-<br>August] <sup>23</sup> 85% (95% CI, 73-<br>93) [January-<br>July] <sup>21</sup> .       91.6% (95% CI,<br>81-97) [January-<br>July] <sup>21</sup> .         91) [11 March –<br>15 August] <sup>12</sup> .       93% (95% CI, 87-<br>95) [11 March –<br>15 August] <sup>12</sup> .         93% (95% CI, 87-<br>91) for individuals       93% (95% CI, 87-<br>91) for individuals                                                                                                                                                                                                                                                                                                                                                                     | SARS-CoV-2<br>infection:<br>90.6% <sup>22</sup> . <sup>xiv</sup> SARS-CoV-2<br>infection:<br>90.6% <sup>22</sup> . <sup>xiv</sup> against death<br>[January-April] <sup>16</sup> 73.1 (95% CI,<br>70.3-75.5) <sup>4</sup> 71% (95% CI, 61-<br>78) [January-<br>August] <sup>23</sup> fill (January-<br>August] <sup>23</sup> 85% (95% CI, 73-<br>93) [January-<br>July] <sup>21</sup> .       91.6% (95% CI,<br>91.6% (95% CI,<br>91.6% (95% CI,<br>91.6% (95% CI,<br>95% (CI, 85-<br>91) [11 March –<br>15 August] <sup>12</sup> .       93% (95% CI, 91-<br>95) [11 March –<br>15 August] <sup>12</sup> .         93% (95% CI, 87-<br>91) for individuals<br>≥50 years [1       93% (95% CI, 91-<br>95) [11 March –<br>15 August] <sup>12</sup> .       93% (95% CI, 91-<br>95) [11 March –<br>15 August] <sup>12</sup> . | Asymptomatic                                                                                                                                                                                                                                                                                                                                                                                  | Asymptomatic             |  |                                                                                           |  |

#### EFFECTIVENESS AGAINST VARIANTS<sup>xviii</sup>

<sup>xi</sup> Results do not disaggregate between BNT162b2 and mRNA-1273

<sup>xii</sup> mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

xiv Results do not disaggregate between BNT162b2 and mRNA-1273

<sup>xv</sup> mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

xviii Effectiveness data against the latest variant of interest (Mu) will be included in upcoming reports based on data availability.



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

| Alpha (B.1.1.7) | Single dose:           48.7% (95%           Cl, 45.5 to 51.7) <sup>24</sup> 66% (95% Cl,64-           68) <sup>25</sup> .           54.5% (95 Cl,           50.4-58.3) <sup>26</sup> <u>Two doses:</u> 93.7% (95% Cl,           91.6 to 95.3) <sup>24</sup> 92% (95% Cl, 90-           93) <sup>27</sup> .           89% (95% Cl, 86-           91) <sup>25</sup> .           78% (95% Cl, 68-           84.4% (95 Cl,           81.8-86.5) <sup>26</sup> | <u>Single dose:</u><br>88.1% (95% CI,<br>83.7 to 91.5) <sup>29</sup><br>83% (95% CI, 80-<br>86) <sup>25</sup> .<br><u>Two doses:</u><br>100% (95% CI,<br>91.8 to 100) <sup>29</sup><br>92% (95% CI, 86-<br>96) <sup>25</sup> .<br>98.4% (95% CI,<br>96.9-99.1) <sup>30</sup> | <u>Single dose:</u><br><b>48.7%</b> (95% Cl<br>45.5 to 51.7) <sup>24</sup><br><b>64%</b> (95% Cl, 60-<br>68) <sup>25</sup> .<br><u>Two doses:</u><br><b>74.5%</b> (95% Cl,<br>68.4 to 79.4) <sup>24</sup><br><b>73%</b> (95% Cl, 66-<br>78) <sup>27</sup> .<br>79% (95% Cl, 56-<br>90) <sup>28</sup> . | - | No published data | <u><i>Two doses:</i></u><br>Equally effective<br>(~76%) in<br>neutralizing<br>D614G, B.1.1.7<br>and B.1.429 as<br>the wild-type<br>strain. | Ongoing studies<br>in South Africa <sup>17</sup><br>and United<br>Kingdom <sup>18</sup> |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Beta (1.351)    | <u>Single dose:</u><br>60% (95% Cl, 52-<br>67) <sup>25</sup> .<br><u>Two doses:</u><br>84% (95% Cl, 69-<br>92) <sup>25</sup> .                                                                                                                                                                                                                                                                                                                            | <u>Single dose:</u><br>61.3% (95% CI,<br>56.5 to 65.5) <sup>29</sup><br>77% (95% CI, 69-<br>92) <sup>25</sup> .<br><u>Two doses:</u><br>96.4% (95% CI,<br>91.9 to 98.7) <sup>29</sup>                                                                                        | <u>Single dose:</u><br><b>48%</b> (95% Cl, 28-<br>63) <sup>25</sup> .                                                                                                                                                                                                                                  | - | No published data | Neutralization<br>capacity was<br>decreased by<br>factor <b>5.27</b> <sup>31</sup> .                                                       | No available<br>data                                                                    |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

| Gamma (P.1)     | Neutralization<br>activity reduced by<br><b>3.3-fold</b> <sup>32</sup> .                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                           | No published data | Demonstrated<br>42% vaccine<br>effectiveness in a<br>setting with high<br>P.1 transmission,<br>in individuals aged<br>70 and above <sup>33</sup> .<br>50.2% against P.1<br>(>14 days after 2 <sup>nd</sup><br>dose) <sup>34</sup> .<br>Neutralization was<br>decreased by<br>factor <b>3.92</b> <sup>31</sup> . | No available<br>data |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Delta (1.617.2) | Single dose: <b>30.7%</b> (95% CI,           25.2 to 35.7) <sup>24</sup> ; <b>57%</b> (95% CI, 50-           63) <sup>28</sup> <b>22.5%</b> (95 CI, <b>17.0-27.4</b> ) <sup>26</sup> <u>Two doses:</u> <b>88.0%</b> (95% CI,           85.3 to 90.1) <sup>24</sup> ; <b>80%</b> (95% CI, 77-           83) <sup>28</sup> <b>79%</b> (95% CI, 77-           80% (95% CI, 77-           82) <sup>27</sup> . <b>80%</b> (95% CI, 77-           83) <sup>28</sup> | Single dose:<br>72% effective<br>against<br>symptomatic<br>SARS-Cov-2<br>infection <sup>39</sup> .<br>$\geq$ 14 days after<br>second dose:<br>76% (95% CI, 58-<br>87) <sup>21</sup> .<br>94.5% (95% CI,<br>94.1-95) [2-9<br>weeks after<br>second dose] <sup>36</sup> .<br>50.6% (95% CI,<br>45.0-55.7) [among] | Single dose:<br><b>30.7%</b> (95% Cl<br>25.2 to $35.7$ ) <sup>24</sup><br><u><i>Two doses:</i></u><br><b>67.0%</b> (95% Cl,<br>61.3 to 71.8) <sup>24</sup><br><b>67%</b> (95% Cl, 62-<br>71) <sup>28</sup> .<br><b>60%</b> (95% Cl, 53-<br>66) <sup>27</sup> .<br><b>66.7%</b> (95% Cl,<br>45-49.6) [2-9<br>weeks after<br>second dose] <sup>36</sup> .<br><b>47.3%</b> (95% Cl,<br>66.3-67.0) [≥20 | <b>78%</b> (95% CI, 73-<br>82) against SARS-<br>CoV-2 infection <sup>10</sup> .<br><u>Individuals ≥50:</u><br><b>83% (</b> 95% CI, 81-<br>85) <sup>10</sup> |                   | <u>Single dose:</u><br><b>13.8%</b> (95% Cl, -<br>60.2-54.8) <sup>41</sup> .<br><u>Two doses:</u><br><b>59%</b> (95% Cl, 16-<br>81.6) against<br>SARS-CoV-2<br>infection and<br><b>70.2%</b><br>(95% Cl, 29.6-<br>89.3) against<br>moderate COVID-<br>19 infection <sup>41</sup> .                              | No available<br>data |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

|                           | <b>40.5%</b> (95% CI,<br>8.7-61.2) <sup>35</sup> .<br><b>42%</b> (95% CI, 13-<br>62) <sup>21</sup> .<br><b>89.8%</b> (95% CI,<br>89.6-90.0) [2-9<br>weeks after<br>second dose] <sup>36</sup> .<br><b>69.7%</b> (95% CI,<br>68.7-70.5) [ $\geq$ 20<br>weeks after<br>second dose] <sup>36</sup> .<br><b>64.6%</b> (95 CI,<br>60.6-68.2) <sup>26</sup><br><b>52.4%</b> (95% CI,<br>48.0-56.4) [among<br>nursing home<br>residents] <sup>37</sup> .<br><b>53%</b> (95% CI, 39-<br>65) [4 months<br>after second<br>dose] <sup>38</sup> | nursing home<br>residents] <sup>37</sup> .<br><b>86.7%</b> (95% CI,<br>84.3-88.7) <sup>30</sup><br><u>10-14 weeks after</u><br><u>second dose:</u><br><b>90.3%</b> (95% CI,<br>67.2-97.1) <sup>36</sup> . | weeks after<br>second dose] <sup>36</sup> .<br>Odds ratio of <b>5.45</b><br>(95% Cl, 1.39-<br>21.4) to become<br>infected with<br>B.1.167.2<br>compared to non-<br>B.1.167.2 <sup>40</sup> . |                   |                   |                   |                      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|----------------------|
| <mark>Mu (B.1.621)</mark> | No available data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>Two doses:</i><br><b>90.4%</b> (95% CI,<br>73.9-96.5) <sup>30</sup><br>(demonstrated<br>similar protective<br>measures as<br>against the Alpha<br>variant)                                             | No available data                                                                                                                                                                            | No available data | No available data | No available data | No available<br>data |



A Foundation of Swiss Universities



SWISS SCHOOL OF 15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|       |                                                                                                                                                                                                                                                                                                                                                                                                                       | EF                                                                                           | FECTIVENESS AGA                                                                                                                                                                                                                                                                    | INST HOSPITALIZA                                                                                                                                                                    | TION                                                                                                                        |                                                                                                                             |                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
| Alpha | Single dose: <b>83%</b><br>(95% CI, 62-93)<br>Two doses: <b>95%</b><br>(95% CI, 78-99) <sup>42</sup> .<br>$\underline{Delta}$<br><u>Against severe</u><br><u>COVID-19</u> :<br><b>91.4%</b> (95% CI,<br>82.5-95.7) <sup>35</sup> .<br>$\underline{Against death:}$<br><b>98.2%</b> (95% CI,<br>95.9-99.2) [2-9<br>weeks] <sup>36</sup> .<br><b>90.4%</b> (95% CI,<br>85.1-93.8) [ $\geq$ 20<br>weeks] <sup>36</sup> . |                                                                                              | Single dose: <b>76%</b><br>(95% Cl, 61-85)<br>Two doses: <b>86%</b><br>(95% Cl, 53-96) <sup>42</sup> .<br><b>Against death:</b><br><b>94.1%</b> (95% Cl,<br>91.8-95.8) [2-9<br>weeks] <sup>36</sup> .<br><b>78.7%</b> (95% Cl,<br>52.1-90.4) [ $\geq$ 20<br>weeks] <sup>36</sup> . | <b><u>Beta</u></b><br><b>67%</b> effective at<br>preventing<br>hospitalizations <sup>43</sup> .<br><u>Against death:</u><br>96% effective at<br>preventing<br>death <sup>43</sup> . | -                                                                                                                           | -                                                                                                                           | No available<br>data |
| Delta | <u>Single dose:</u><br>94% (95% Cl, 46-<br>99) <sup>42</sup> .<br>91% (95% Cl, 90-<br>93) <sup>44</sup>                                                                                                                                                                                                                                                                                                               | <u>Single dose:</u><br><b>81%</b> (95% Cl, 81-<br>90.6) <sup>21</sup> .<br><u>Two doses:</u> | <u>Single dose:</u><br><b>71%</b> (95% CI, 51-<br>83) <sup>42</sup><br><b>88%</b> (95% CI, 83-<br>91) <sup>44</sup>                                                                                                                                                                | <b>71%</b> <sup>43</sup><br><b>85%</b> (95% CI, 73-<br>91) <sup>10</sup> .                                                                                                          | <u>Single dose:</u><br>Does not offer<br>clinically<br>meaningful<br>protection against<br>severe illness <sup>47,xix</sup> | <u>Single dose:</u><br>Does not offer<br>clinically<br>meaningful<br>protection against<br>severe illness <sup>47,xxi</sup> |                      |

xix Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

xxi Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.



A Foundation of Swiss Universities



| 96% (95% Cl, 86-<br>99) <sup>42</sup> .       8         88% (95% Cl,<br>78.9-93.2) <sup>35</sup> .       9         75% (95% Cl, 24-<br>93.9) <sup>21</sup> .       9         84% (95% Cl, 79-<br>89) <sup>45</sup> .       9         98.4% (95% Cl, 79-<br>89) <sup>45</sup> .       9         97.9-98.8) [2-9       9 | 84% (95% CI, 80-<br>87) <sup>44</sup><br>90<br><u>Against ICU<br/>admission:</u><br>86% (95% CI, 79-<br>90) <sup>44</sup><br>96% against<br>severe COVID-19<br>infection <sup>39</sup> . | Two doses:         92% (95% CI, 75-         97) <sup>42</sup> .         95.2% (95% CI,         94.6-95.6) [2-9         weeks] <sup>36</sup> .         77.0% (95% CI,         70.3-82.3) [≥20         weeks] <sup>36</sup> .         94% (95% CI, 92-         95) <sup>44</sup> Against ICU         admission:         Single dose: 92%         (95% CI, 84-96) <sup>44</sup> Two doses: 96%         (95% CI, 94-98) <sup>44</sup> | <b>91%</b> (95% CI, 88-<br>94) <sup>44</sup><br><b>85%</b> effective at<br>preventing severe<br>disease and<br>hospitalization <sup>46</sup> .<br><u>Individuals <math>\geq</math> 50:</u><br><b>84%</b> (95% CI, 81-<br>85) <sup>10</sup><br><u>Against ICU</u><br><u>admission:</u><br><b>94%</b> (95% CI, 88-<br>98) <sup>44</sup> | <u><i>Two doses:</i></u><br>88% (95% CI, 55-<br>98) adjusted risk<br>reduction in<br>developing severe<br>illness. <sup>47,xx</sup> | <u>Two doses:</u><br>88% (95% CI, 55-<br>98) adjusted risk<br>reduction in<br>developing severe<br>illness. <sup>47,xxii</sup> |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          | SAFETT AND AL                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                |  |

<sup>xx</sup> Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.

<sup>xxii</sup> Study does not differentiate between the two inactivated vaccines, BBIBP-CorV and CoronaVac.



A Foundation of Swiss Universities

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

21/76



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

| Common side<br>effects | <ul> <li>Pain at the injection site, fatigue, headache, myalgia, chills and fever.<sup>48</sup></li> <li>Optimal safety for asthma patients<sup>49</sup>.</li> <li>The vaccine is considered safe for cancer patients undergoing treatments<sup>50</sup>.</li> </ul>                                                                                                                                                                                | Pain at injection<br>site, headache,<br>fatigue, myalgia,<br>arthralgia <sup>51</sup> , Covid<br>arm (cutaneous<br>hypersensitivity) <sup>52</sup> .<br>The vaccine is<br>considered safe<br>for cancer patients<br>undergoing<br>treatments <sup>50</sup> .                                                                                                                                                                                            | Fatigue, myalgia,<br>arthralgia,<br>headache <sup>53</sup> ,<br>lethargy, fever, &<br>nausea <sup>54</sup> .                                                                                                                                                                                                                                                                                               | Headache, fever,<br>chills, fatigue,<br>myalgia, and<br>nausea <sup>55</sup> .                                                                                                                                                                                                                                                                               | Pain at the<br>injection site,<br>dizziness, fever,<br>headache, fatigue,<br>nausea, vomiting,<br>& allergic<br>dermatitis <sup>54,56</sup> .                | Pain at injection<br>site, headache,<br>fatigue, tremors, &<br>flushing <sup>57</sup> ,<br>inflammatory<br>reaction,<br>urticaria <sup>58</sup> .                                                                                                                                                                                                                                    | Pain at injection-<br>site, headache,<br>muscle pain,<br>fatigue <sup>59</sup>                                        |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Rare adverse<br>events | Myocarditis &<br>myopericarditis <sup>60-</sup><br><sup>62</sup> , anaphylaxis<br>and swelling of the<br>lips, face, and<br>tongue related to<br>anaphylaxis <sup>63</sup> (11<br>anaphylaxis cases<br>per million doses<br>administered) <sup>64</sup> ,<br>axillary<br>lymphadenopathy,<br>paroxysmal<br>ventricular<br>arrhythmia, leg<br>paresthesia <sup>65</sup> ,<br>pityriasis rosea <sup>66</sup><br>(lesions improved<br>completely after | Myocarditis &<br>myopericarditis <sup>60-</sup><br><sup>62</sup> , orofacial<br>swelling &<br>anaphylaxis <sup>63</sup> .<br>Potential risk<br>factor for Bell's<br>palsy <sup>83</sup> (most<br>improve upon<br>follow-up) <sup>91</sup> ,<br>herpes zoster<br>reactivation <sup>70</sup> ,<br>varicella zoster<br>reactivation <sup>70</sup> ,<br>herpes zoster<br>ophtalmicus <sup>92</sup> ,<br>eczema &<br>urticaria <sup>93</sup> ,<br>transverse | Transverse<br>myelitis, high<br>fever <sup>53,100</sup> ,<br>cutaneous<br>hypersensitivity <sup>100</sup> ,<br>vasculitis <sup>101</sup> ,<br>cerebral venous<br>sinus<br>thrombosis <sup>102</sup><br>(higher risk for<br>women) <sup>103</sup> ,<br>thromboembolism <sup>1</sup><br><sup>04</sup> , vaccine<br>induced immune<br>thrombotic<br>thrombocytopenia <sup>1</sup><br>0 <sup>5,106-108</sup> , | Thrombosis,<br>thrombocytopenia,<br>cerebral venous<br>sinus<br>thrombosis <sup>124</sup> ,<br>increased risk of<br>developing<br>Guillain-Barré<br>syndrome post<br>vaccination <sup>125</sup> ,<br>herpes zoster<br>ophtalmicus <sup>92</sup> .<br>97% of reported<br>reactions after<br>vaccine<br>administration<br>were non-<br>serious <sup>55</sup> . | Rare adverse<br>events were<br>similar among the<br>vaccine groups<br>and control group<br>within 7 days <sup>126</sup> .<br>Pityriasis rosea <sup>127</sup> | Myalgia, fever <sup>57</sup> ,<br>pityriasis rosea<br>(lesions improved<br>completely after<br>~8 weeks) <sup>67</sup> ,<br>reactivation of<br>herpes zoster and<br>herpes simplex <sup>58</sup> .<br>Most reactions<br>improved without<br>treatment within a<br>few weeks <sup>58</sup> ,<br>Guillain-Barré<br>syndrome <sup>128</sup> ,<br>subacute<br>thyroiditis <sup>129</sup> | Myocarditis was<br>reported in one<br>vaccine<br>recipient,<br>occurring 3 days<br>after second<br>dose <sup>59</sup> |



A Foundation of Swiss Universities



SWISS SCHOOL OF 5. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|  | ~8 weeks) <sup>67</sup> ,<br>lymphocytic<br>vasculitis <sup>68</sup> ,<br>varicella-zoster<br>reactivation <sup>69-71</sup> ,<br>Kikuchi-Fujimoto<br>disease <sup>72</sup> ,<br>thrombotic<br>thrombocytopenic<br>purpura <sup>73,74</sup> , IgA<br>nephropathy flare-<br>up <sup>75</sup> , Guillain-<br>Barré syndrome<br><sup>76,77</sup> , pustural<br>psoriasis <sup>78</sup> ,<br>immune complex<br>vasculitis <sup>79</sup> ,<br>immune complex<br>vasculitis <sup>80</sup> ,<br>Rhabdomyolysis <sup>81</sup> ,<br>subacute<br>thyroiditis <sup>82</sup> , Bell's<br>Palsy <sup>83</sup> , erythema<br>multiforme <sup>84</sup> ,<br>vaccine induced<br>interstitial lung<br>disease <sup>85</sup> , macular<br>neuroretinopathy <sup>86</sup><br>, brachial<br>neuritis <sup>87</sup> , thyroid<br>eye disease <sup>88</sup> , | myelitis <sup>94</sup> , Guillain-<br>Barré<br>syndrome <sup>95,96</sup> ,<br>acute generalized<br>exanthematous<br>pustulosis <sup>97</sup> ,<br>rhabdomyolysis <sup>98,9</sup><br><sup>9</sup> | intracerebral<br>haemorrhage <sup>109</sup> ,<br>small vessel<br>vasculitis <sup>101,110</sup> ,<br>psoriasis <sup>111</sup> ,<br>rosacea,<br>raynaud's<br>phenomenon <sup>93</sup> ,<br>Ischaemic<br>stroke <sup>112</sup> ,<br>anaphylaxis <sup>113</sup> ,<br>recurrent herpes<br>zoster <sup>114,xxiii</sup> ,<br>generalized<br>bullous fixed drug<br>eruption <sup>115</sup> ,<br>Guillain-Barré<br>syndrome <sup>77,116</sup> ,<br>pityriasis<br>rosea <sup>117,118</sup> .<br>Vaccination in<br>individuals with<br>adrenal<br>insufficiency can<br>lead to adrenal<br>crises <sup>119</sup> , Dariers |  |  |  |  |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|

xxiii All cases occurred in patients with chornic urticaria and were being treated with cyclosporine.



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                                                                               | exacerbation of<br>subclinical<br>hyperthyroidism <sup>89</sup> ,<br>rhabdomyolysis <sup>90</sup>                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                | disease <sup>120</sup> ,<br>vaccine induced<br>acute localized<br>exanthematous<br>pustulosis <sup>121</sup> ,<br>Henoch-Schönlein<br>Purpura <sup>122</sup> ,<br>rhabdomyolysis <sup>123</sup> |                                |   |   |                      |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---|---|----------------------|
| Potential<br>associated<br>adverse events<br>(causal links not<br>yet proven) | Cerebral venous<br>sinus thrombosis<br>and intracranial<br>haemorrhage <sup>130</sup> ,<br>aseptic<br>meningitis <sup>131</sup> ,<br>autoimmune<br>hepatitis <sup>132,133</sup> ,<br>multiple sclerosis<br>relapse <sup>134</sup> ,<br>myeloperoxidase<br>anti-neutrophil<br>cytoplasmic<br>antibody-positive<br>optic<br>perineuritis <sup>135</sup> ,<br>central retinal vein<br>occlusion <sup>136</sup> ,<br>paracentral acute<br>middle<br>maculopathy & | Autoimmune<br>hepatitis <sup>132</sup> ,<br>myocardial<br>infarction <sup>140</sup> ,<br>autoimmune<br>haemolytic<br>anaemia <sup>141</sup> ,<br>hypophysitis &<br>panhypopituitaris<br>m <sup>142</sup><br>One case<br>developed IgA<br>Nephropathy after<br>receiving the<br>second dose of<br>mRNA-1273<br>(causal link not yet<br>proven) <sup>143</sup> . | Autoimmune<br>hepatitis <sup>132</sup> , Acute<br>hyperglycaemic<br>crisis <sup>144</sup> , Facial<br>nerve palsy,<br>cervical<br>myelitis <sup>112</sup> ,<br>alopecia areata <sup>145</sup>   | Facial Diplegia <sup>146</sup> | - | - | No available<br>data |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                  | acute macular<br>neurotinopathy <sup>137</sup> ,<br>Stevens-Johnson<br>syndrome/ toxic<br>epidermal<br>necrolysis <sup>138,139</sup>                                                                                                                                                                                                                                                                                                              |                                                                |                   |                   |                   |                   |                                                                                                                                                                                                                                                  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Myocarditis data | Mainly reported in<br>young adults and<br>adolescents <sup>147</sup><br><u>Israeli study:</u><br>Estimated<br>incidence within<br>42 days after<br>receipt of first<br>dose per 100,000<br>vaccinated<br>persons was <b>2.13</b><br>cases (95% CI,<br>1.56-2.7) <sup>148</sup><br><u>Male patients</u><br>Incidence of <b>4.12</b><br>(95% CI, 2.99-<br>5.26) per 100,000<br>vaccinated <sup>148</sup><br><u>Male patients (16-<br/>29 years)</u> | Mainly reported in young adults and adolescents <sup>147</sup> | No available data | No available data | No available data | No available data | Myocarditis was<br>reported as viral<br>myocarditis.<br>Participant fully<br>recovered after<br>2 days of<br>hospitalisation.<br>No episode of<br>anaphylaxis or<br>vaccine-<br>associated<br>enhanced<br>COVID-19 was<br>reported <sup>59</sup> |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

26/76

| Incidence of <b>10.69</b><br>(95% CI, 6.93-<br>14.46) per 100,00<br>vaccinated <sup>148</sup>                                                                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Female patients<br>Incidence of <b>0.23</b><br>(95% CI, 0-0.49)<br>per 100,000<br>vaccinated <sup>148</sup>                                                   |  |  |  |
| <u>16-29 years</u><br>Incidence of <b>5.49</b><br>(95% CI, 3.59-<br>7.39) per 100,00<br>vaccinated <sup>148</sup>                                             |  |  |  |
| <u>≥30 years</u><br>Incidence of <b>1.13</b><br>(95% CI, 0.66-<br>1.60) per 100,00<br>vaccinated <sup>148</sup>                                               |  |  |  |
| Disease severity<br>Mild: <b>1.62</b> (95%<br>CI, 1.12-2.11)<br>Intermediate: <b>0.47</b><br>(95% CI, 0.21-<br>0.74)<br>Fulminant: <b>0.04</b><br>(95% CI, 0- |  |  |  |
| 0.12) <sup>148</sup>                                                                                                                                          |  |  |  |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                | Risk per 100,000           persons           1st dose (male):           0.64           2nd dose (male);           3.83           1st dose (female):           0.07           2nd dose (female):           0.46           1st dose (female):           0.46           1st dose (male 16-           19): 1.34           2nd dose (male 16-           19): 15.07 <sup>149</sup> |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                              | TR                                                                                                                                                                                                                                                                                                                 | ANSMISSION, PREV                                                                                                                                                                                                   | ENTION & PROTEC                                                                                                                                                                                                                   | TION                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                        |
| Immunogenicity | 7-14 days after<br>second dose:<br>18-55 years:<br>GMT ranged from<br><b>1.7 to 4.6</b> times<br>the GMT of the<br>convalescent<br>serum <sup>150</sup> .<br>65-85 years:<br>GMT ranged from<br><b>1.1 to 2.2</b> times<br>the GMT of the<br>convalescent<br>serum <sup>150</sup> .                                                                                          | <u>14 days after second dose:</u> 18-55 years:         PRNT <sub>80</sub> GMT <b>654.3</b> (95% CI, <b>460.1-930.5</b> ) <sup>151</sup> .         56-70 years:         PRNT <sub>80</sub> GMT <b>878</b> (95% CI, 516- <b>1494</b> ) <sup>152</sup> .         ≥71 years:         PRNT <sub>80</sub> GMT <b>317</b> | 28 days after<br>second dose<br>median antibody<br>titres:<br>18–55 years:<br>20,713 AU/mL<br>[IQR 13,898 -<br>33,550] <sup>153</sup><br>56–69 years:<br>16,170 AU/mL<br>[IQR 10,233 -<br>40,353] <sup>153</sup> . | 29 days after<br>vaccination:<br>18-55 years:<br>GMC 586 (95%<br>CI, 445-771);<br>GMT 224 (95%<br>CI, 168-298) <sup>154</sup> .<br>≥65 years: GMC<br>312 (95% CI, 246-<br>396); GMT 212<br>(95% CI, 163-<br>266) <sup>154</sup> . | <u>14 days after</u><br><u>second dose:</u><br>18-55 years: GMT<br><b>211.2 (95% CI,</b><br>158.9-280.6) <sup>155</sup> .<br>≥60 years: GMT<br>131.5 (95% CI,<br>108.2-159.7) <sup>155</sup> . | <u>Single dose (&gt;4</u><br><u>weeks)</u> :<br><b>37.7<math>\pm</math>57.08 IU/mI</b><br>(min: 0, max:<br><b>317.25</b> ); 57.02%<br>of participants did<br>not develop<br>sufficient antibody<br>titres (<25.6 IU<br>ml)<br><u>Two doses (&gt;4</u><br><u>weeks)</u> :<br><b>194.61<math>\pm</math>174.88</b><br>IU/mI (min: 0,<br>max: 677.82); | <u>14 days after</u><br><u>second dose</u><br>(18-84 years):<br>5-ug: IgG GMT<br>44,421 EU/ mI<br>(95% CI,<br>37,929-<br>52,024) <sup>157</sup> .<br>25-ug: IgG GMT<br>46,459 EU/mI<br>(95% CI,<br>40,839-<br>52,853) <sup>157</sup> . |



A Foundation of Swiss Universities



|                                   |                                                                                                                                                                                                                                                                                                                                                | <b>(95% Cl, 181-</b><br>557) <sup>152</sup> .                                      | ≥70 years: 17,561<br>AU/mL [IQR<br>9,705 - 37,796] <sup>153</sup> .                                                                                         | 57 days after<br>vaccination:<br>18-55 years: <b>754</b><br>(95% CI, 592-<br>961); GMT 288<br>(95% CI, 221-<br>376) <sup>154</sup> . |         | 11.48% of<br>participants did<br>not develop<br>sufficient antibody<br>titres (<25.6 IU<br>ml) <sup>156</sup> . |         |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|---------|
| <b>Transmission</b><br>prevention | Prior Delta<br>Variant:<br>Vaccine<br>effectiveness<br>against<br>infectiousness<br>given infections<br>41.3%158Vaccine<br>effectiveness<br>against<br>transmission<br>88.5%158During Delta<br>Variant:<br>Similar Ct values<br>(<25) were found<br>in both vaccinated<br>and unvaccinated<br>groups159Studies from<br>Scotland and<br>England | VE against<br>onwards<br>transmission: <b>52%</b><br>(95% CI, 33-69) <sup>13</sup> | <b>48%</b> (limited data)<br>May not be able to<br>block the<br>transmission of<br>the alpha variant<br>as efficiently as<br>the wild type <sup>162</sup> . | Limited data                                                                                                                         | Unknown | Unknown                                                                                                         | Unknown |



A Foundation of Swiss Universities

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

28/76



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

|                        | demonstrated<br>reductions in<br>secondary<br>infections among<br>families of<br>vaccinated<br>individuals<br>compared to<br>families of<br>unvaccinated<br>individuals <sup>160,161</sup> .<br>VE against<br>onwards<br>transmission: <b>62%</b><br>(95% CI, 57-67) <sup>13</sup> |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |   |         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|
| Duration of protection | Median time<br>between second<br>dose and<br>infection:<br><b>146 days (IQR,</b><br><b>121-167)</b> <sup>163</sup><br><u>Anti-SARS-CoV-2</u><br><u>Antibodies:</u><br>1 month after 2 <sup>nd</sup><br>dose: <b>1762 KU/L</b><br>(IQR: 933-3761)                                   | Preliminary phase<br><u>I results:</u><br>Antibody activity<br>remained high in<br>all age groups at<br><b>day 209</b><br>(approximately 6<br>months)<br>GMT were lower<br>in ≥56 years old <sup>168</sup><br><b>36.4</b> (95% CI,<br>17.1-51.5)<br>reduction of | <u>Antibody</u><br><u>Response:</u><br>After single dose,<br>antibody response<br>declined within<br>one year, but<br>remained above<br>baseline levels.<br>Antibody levels<br>after <b>day 180</b> :<br>0.54 GMR (Cl,<br>0.47-0.61).<br>Antibody levels<br>after <b>day 320</b> : | <u>Neutralizing</u><br><u>antibodies:</u><br>Remained largely<br>stable for <b>8-9</b><br><b>months</b> <sup>171</sup><br><u>Binding</u><br><u>antibodies:</u><br>Remained stable<br><b>6 months</b><br>irrespective of age<br>group <sup>171</sup> | Antibody<br><u>Response:</u><br>Unexposed<br>subjects:<br>After 1 <sup>st</sup> dose:<br>43.6 IU/mL (95%<br>Cl, 30.3-62.8)<br>After 2 <sup>nd</sup> dose:<br>377.0 IU/mL (95%<br>Cl: 324.3-438.3)<br>3 months after 2 <sup>nd</sup><br>dose: 125.4 IU/mL<br>(95% Cl: 88.2-<br>178.4) <sup>173</sup> | A phase I/II<br>clinical trial found<br>that NAbs titres<br>dropped below the<br>seropositive cut-<br>off of 8, <b>6 months</b><br>after the<br>administration of<br>the first dose <sup>174</sup> .<br><b>80-90%</b> of anti-S<br>IgG and Nab titers<br>against wild type<br>waned <b>6 months</b> | l | Jnknown |



A Foundation of Swiss Universities



. swiss school of15.10.2021 - Sabina Rodriguez Velásquez, Gabriela ривlic неаltн

| 3 months<br>dose: 108<br>(IQR: 629<br>6 months<br>dose: 802<br>(IQR, 447<br>No health<br>had antibo<br>BELOW m<br>dependen<br>(0.8 KU/L)<br>VE reduce<br>22% (95%<br>41) for eve<br>days from<br>second do<br>those age<br>64 years <sup>26</sup><br><u>Effectiven</u><br><u>against an</u><br><u>SARS-Co</u><br><u>Infection:</u><br>After reac<br>peak VE (<br>1 month a<br>dose, VE to<br>20% in<br>5-7 after 2<br>dose <sup>165</sup> | 6 KU/L<br>-2155)<br>after 2 <sup>nd</sup><br>KU/L<br>-1487) <sup>164</sup><br>worker<br>odies<br>nethod-<br>it cut-off<br>od by<br>6 CI, 6-<br>ery 30<br>the<br>ose for<br>d 18 to<br>3.<br><u>Pess</u><br>24<br><u>V-2</u><br>hing<br>77.5%)<br>after 2 <sup>nd</sup><br>dropped<br>months | observed<br>incidence rate<br>(SARS-CoV-2<br>infection) if<br>vaccinated from<br>Dec 2020 – Apr<br>2021 than Jul<br>2021 – Dec<br>2020. <sup>169</sup><br><b>46.0</b> (95% CI, -<br>52.4-83.2)<br>reduction of<br>observed<br>incidence rate<br>( <b>severe</b> SARS-<br>CoV-2 infection) if<br>vaccinated from<br>Dec 2020 – Apr<br>2021 than Jul<br>2021 – Dec<br>2020. <sup>169</sup><br><b>VE against the</b><br>Delta variant<br>declined from<br><b>94.1%</b> (95% CI,<br>90.5-96.3) 14-60<br>days after<br>vaccination to<br><b>80.0%</b> (95% CI,<br>70.2-86.6) 151- | 0.30 GMR (CI,<br>0.24-0.39) <sup>170</sup><br><u><i>Cellular Immune</i><br/><u><i>Response:</i></u><br/><b>Day 182</b> after first<br/>dose: median of<br/>237 SFUx10<sup>6</sup><br/><b>PBMC (IQR, 109-</b><br/>520)<sup>170</sup><br/><b>6 months</b> after<br/>second dose:<br/>(median 1240,<br/><b>IQR 432-2002</b>) in<br/>groups with 15-25<br/>week interval<br/>between doses<sup>170</sup><br/>VE reduced by 7%<br/>(95% CI, -18 - 2)<br/>for every 30 days<br/>from the second<br/>dose for those<br/>aged 18 to 64<br/>years<sup>28</sup>.<br/><u>Anti-spike Protein</u><br/><u>RBD IgG</u><br/><u>Antibodies:</u><br/><b>Younger age</b><br/>groups (&lt;60):</u> | <u>Humoral &amp;</u><br><u>Cellular Immune</u><br><u>Response:</u><br>Antibody<br>responses were<br>detected in all<br>vaccine recipients<br>on <b>day 239</b><br>(stable response<br>for at least 8<br>months) <sup>172</sup><br>A study observed<br>sustained and<br>stable vaccine<br>effectiveness<br>starting 14 days<br>post vaccination to<br>a maximum of <b>152</b><br>days after<br>vaccination <sup>10</sup> .<br>VE decreased<br>from <b>89.4%</b> in<br>May to <b>51.7%</b> in<br>July <sup>23</sup> | Exposed<br>subjects:<br>Before 1 <sup>st</sup> dose:<br>203.2 Ul/mL (95%<br>Cl: 42.9-962.4)<br>After 1 <sup>st</sup> dose:<br>761.7 Ul/mL (95%<br>Cl: 381.1-1522)<br>After 2 <sup>nd</sup> dose:<br>719.9 Ul/mL (95%<br>Cl : 264.6-1959)<br>3 months after 2 <sup>nd</sup><br>dose: 484.4 IU/mL<br>(95% Cl: 147.3-<br>1593) <sup>173</sup> | after second<br>vaccination <sup>175</sup><br><u>Anti-spike Protein</u><br><u>RBD IgG</u><br><u>Antibodies:</u><br>Younger age<br>groups (<60):<br>1 month after 2 <sup>nd</sup><br>dose: 97%<br>seropositivity, 11.3<br>(IQR, 6.2-20.7)<br>3 months after 2 <sup>nd</sup><br>dose: 76%<br>seropositivity, 2.4<br>(IQR, 1.0-5.0) <sup>166</sup><br>Older age groups<br>(≥60):<br>1 month after 2 <sup>nd</sup><br>dose: 88%<br>seropositivity, 6.4<br>(IQR, 2.5-13.6)<br>3 months after 2 <sup>nd</sup><br>dose: 60%<br>seropositivity, 1.3<br>(IQR, 0.5-3.3) <sup>166</sup> |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

| Effectiveness<br>against<br>Hospitalization<br>and Death:<br>After reaching<br>peak VE (96.8%)<br>2 months after 2 <sup>nd</sup><br>dose, VE did not<br>decline over<br>time, except for<br>7 <sup>th</sup> months (VE<br>55.6%) with very<br>few cases <sup>165</sup><br>Anti-spike Protein<br><u>RBD IgG</u><br>Antibodies:<br>Younger age<br>groups (<60):<br>1 month after 2 <sup>nd</sup><br>dose: 100%<br>seropositivity, <b>35.3</b><br>(IQR, 27.6-40.0)<br>3 months after 2 <sup>nd</sup><br>dose: 100%<br>seropositivity, <b>19.2</b><br>(IQR, 8.2-23.1) <sup>166</sup> | 180 days after<br>vaccination. <sup>30</sup><br>91% [January-<br>March]<br>71% (95% CI, 53-<br>83) [April-May]<br>63% (95% CI, 44-<br>76) <sup>23</sup> | 1 month after 2 <sup>nd</sup><br>dose: 100%<br>seropositivity, <b>17.1</b><br>(IQR, 9.9-23.6)<br>3 months after 2 <sup>nd</sup><br>dose: 97%<br>seropositivity, <b>6.5</b><br>(IQR, 3.5-9.3) <sup>166</sup><br><b>Older age groups</b><br>( <b>260</b> ):<br>1 month after 2 <sup>nd</sup><br>dose: 96%<br>seropositivity, <b>13.3</b><br>(IQR, 6.9-27.7)<br>3 months after 2 <sup>nd</sup><br>dose: 90%<br>seropositivity, <b>3.9</b><br>(IQR, 1.9-8.4) <sup>166</sup> |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1 month after 2 <sup>nd</sup><br>dose: 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

| seropositivity, <b>29.4</b><br>(IQR, 22.5-33.3)<br>3 months after 2 <sup>nd</sup><br>dose: 100%<br>seropositivity, <b>14.8</b><br>(IQR, 7.4-18.7) <sup>166</sup> |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sub-populations:<br>Older age (≥65):<br>38% to 42%<br>decrease of<br>humoral<br>antibodies<br>compared to 18-<br>to 45-year-old <sup>167</sup>                   |  |  |
| Older age (≥65)<br>AND men:<br>37% to 46%<br>decrease<br>compared to 18-<br>to 45-year-old<br>women <sup>167</sup>                                               |  |  |
| Immunosuppress<br>ion:<br>65% to 70%<br>decrease<br>compared to non-<br>immunosuppresse<br>d <sup>167</sup>                                                      |  |  |



A Foundation of Swiss Universities



SWISS SCHOOL OF 15. 10. 2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

33/76

|          | Obesity (BMI<br>≥30):<br>31% increase in<br>neutralizing<br>antibody<br>compared with<br>nonobese <sup>167</sup>                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        | CHILDREN                                                                                                                                                               | VACCINATION                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                   |
| Efficacy | <u>Adolescents (12-<br/>15):</u><br>After one dose<br>had efficacy of<br><b>75% (CI, 7.6-95.5)</b><br>After second dose<br>efficacy of <b>100%</b><br>( <b>CI, 78.1-100</b> ) <sup>176</sup> .<br><u>Children (5-11):</u><br>Ongoing trials <sup>177</sup><br><u>Children (Under 5</u><br><u>years):</u><br>Ongoing trials <sup>177</sup> | <u>Adolescents (12-<br/>17):</u><br>After one dose<br>had efficacy of<br>92.7% (Cl, 67.8-<br>99.2)<br>After second dose<br>efficacy of 93.3%<br>(Cl, 47.9-99.9) <sup>178</sup> .<br><u>Children (6month-<br/>11):</u><br>Ongoing trials <sup>179</sup> | No available data<br>Paused ongoing<br>trials in children<br>aged 6-17 due to<br>concerns over<br>rare blood clots<br>reported in adult<br>population <sup>180</sup> . | No available data<br>Announced at<br>begging of April<br>ongoing study in<br>adolescents but<br>paused to<br>investigate blood<br>clots in adult<br>population <sup>180</sup> . | Children (3-17):<br>Unknown.<br>Ongoing clinical<br>trial only looked at<br>safety, tolerability,<br>and<br>immunogenicity <sup>xxiv</sup><br>*<br>* The study design<br>administered <b>three</b><br><b>doses</b> of 2 μg, 4 μg, or<br>8 μg of vaccine | <u>Children (3-17):</u><br>Unknown. Clinical<br>trial only looked at<br>safety, tolerability<br>and<br>immunogenicity <sup>181</sup> . | Adolescents<br>(16-17):<br>PREVENT-19<br>clinical trial <sup>xxv</sup><br>expanded to<br>assess efficacy,<br>safety, and<br>immunogenicity<br>in 12–17-year-<br>old<br>adolescents <sup>182</sup> |

xxiv Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. *The Lancet Infectious Diseases*. <u>https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00462-X/fulltext</u>

xvv A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥18 Years With a Pediatric Expansion in Adolescents (12 to <18 Years) at Risk for SARS-CoV-2. *ClinicalTrials.gov.* ClinicalTrials.gov Identifier: NCT04611802. <u>https://clinicaltrials.gov/ct2/show/NCT04611802?term=Novavax&cond=Covid19&draw=2</u>



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

| Adolescents (12-<br>15) serum-<br>neutralizing titer:<br>1 month after 2nd<br>dose had 1283.0<br>GMN50 (Cl,<br>1095.5-1402.5)176.Adolescents (12-<br>17):<br>Neutralizing<br>antibody titer after<br>2nd dose had 705.1<br>GMN50 (Cl, 621.4-<br>800.2)176.ImmunogenicityChildren (5-11):<br>1 month after 2nd<br>dose had 705.1<br>GMN50 (Cl, 621.4-<br>800.2)176.Adolescents (12-<br>17):<br>Neutralizing<br>antibody titer after<br>2nd dose was<br>1401.7 GMN50<br>(Cl, 1276.3-<br>1539.4)<br>Serological<br>response was<br>98.8% (Cl, 97.0-<br>99.7)ImmunogenicityChildren (5-11):<br>1 month after 2nd<br>dose had 1,197.6<br>GMT (95% Cl,<br>1106.1-1296.6)<br>SARS-CoV-2-<br>neutralizing<br>antibody183Children (6month-<br>11):<br>Ongoing trials177 | No available data | No available data | <u>Children (3-17):</u><br>Neutralizing<br>antibodies after 28<br>days after 2 <sup>nd</sup><br>dose ranged from<br><b>105.3-180.2 GMT</b><br>in 3-5 years<br>cohort, <b>84.1-168.6</b><br><b>GMT</b> in 6-12 years<br>cohort, and <b>88.0-</b><br><b>155.7 GMT</b> in 13-<br>17 years cohort<br>Neutralizing<br>antibodies after 28<br>days after 3 <sup>rd</sup> dose<br>ranged from<br><b>143.5-224.5 GMT</b><br>in 3-5 years<br>cohort, <b>127-184.8</b><br><b>GMT</b> in 6-12 years<br>cohort, and <b>150.7-</b><br><b>199 GMT</b> in 13-17<br>years cohort <sup>184</sup> | <u>Children (3-17):</u><br>Neutralizing<br>antibody response<br>after 2 <sup>nd</sup> dose<br>(100%)<br>with GMT ranging<br>from <b>45.9-212.6</b> <sup>181</sup> | Ongoing clinical trial <sup>185</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

| Safety and<br>Adverse events | Adolescents (12-<br>15):<br>Local and<br>systemic events<br>were generally<br>mild to moderate<br>Severe injection-<br>site pain (1.5%)<br>Fever (20%)<br>High Fever (0.1%)<br>Adverse events<br>(6%)<br>Severe adverse<br>events (0.6%) <sup>176</sup> .<br><u>Adolescent/young</u><br><u>adults (16-25):</u><br>Local and<br>systemic events<br>were generally<br>mild to moderate<br>Severe injection-<br>site pain (3.4%)<br>Fever (17%)<br>Adverse events<br>(6%)<br>Severe adverse<br>events (1.7%) <sup>176</sup> . | Adolescents (12-<br><u>17)</u> :<br>Solicited local<br>reactions after 2nd<br>dose (93.4%)<br>Most common<br>solicited adverse<br>reactions were<br>Injection-site pain<br>(92.7%)<br>Headache<br>(70.2%)<br>Fatigue (67.8%)<br>Grade 3 adverse<br>events (6.8%)<br>Few reported<br>cases of acute<br>myocarditis and<br>pericarditis<br>(mainly in<br>males) <sup>186</sup><br><u>Children (6month-<br/>11)</u> :<br>Ongoing trials <sup>179</sup> | No available data | No available data | Children (3-17):<br>Most common<br>adverse reaction<br>was pain at<br>injection site in 3–<br>5-year group<br>(4%), 6-12-year<br>group (1.2%), and<br>13-17-year group<br>(7.9%)<br>Most common<br>systemic reactions<br>in all three age<br>cohorts were mild<br>to moderate fever<br>and cough<br>Adverse events<br>were mostly mild<br>to moderate in<br>severity <sup>184</sup> | <u>Children (3-17):</u><br>Adverse reactions<br>in 12–17 year<br>group (35%), 3-5<br>year group (26%),<br>and 6-11 year<br>group (18%)<br>Reported at least<br>one adverse event<br>(27%)<br>Most reported<br>events were mild<br>and moderate and<br>only (<1%) grade<br>3 events<br>Injection-site pain<br>(13%)<br>Fever (25%) <sup>181</sup> | Ongoing clinical<br>trial <sup>185</sup> |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|

Whiversitian  $u^{b}$  Universitian  $u^{b}$  Universitian  $u^{b}$  Universitian  $u^{b}$  Universitian  $u^{b}$  SUPSI and  $u^{b}$ 

A Foundation of Swiss Universities



SWISS SCHOOL OF 15. 10. 2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

36/76

| Vaccine<br>Schedule      | BNT162b2/ChAd<br>Ox1<br>Administration of<br>ChAdOx1 as<br>second/booster<br>dose                                                                        | ChAdOx1/mRNA-<br>1273<br>Administration of<br>mRNA-1273 as<br>second/booster<br>dose | ChAdOx1/BNT16<br>2b2<br>Administration of<br>BNT162b2 as<br>second/booster<br>dose | Not Applicable<br>(one dose<br>schedule)<br>For more<br>information refer<br>to booster section | BBIBP/BNT162b2    | CoronaVac/ChAd<br>Ox1<br>Press releases<br>have confirmed<br>that Thailand will<br>use the<br>AstraZeneca<br>vaccine as the | Ongoing trial <sup>187</sup><br>(Com-Cov2) <sup>xxvii</sup> |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| HETEROLOGOUS VACCINATION |                                                                                                                                                          |                                                                                      |                                                                                    |                                                                                                 |                   |                                                                                                                             |                                                             |
| Myocarditis Data         | Few reported<br>cases of acute<br>myocarditis and<br>pericarditis in 16-<br>25 year olds<br>(mainly in<br>males) <sup>186</sup>                          | Few reported<br>cases of acute<br>myocarditis in<br>adolescents and<br>young adults  | No available data                                                                  | No available data                                                                               | No available data | No available data                                                                                                           | No available data                                           |
|                          | are consistent with<br>those observed in<br>older populations<br><sup>183</sup><br><u>Children (Under</u><br><u>5):</u><br>Ongoing trials <sup>177</sup> |                                                                                      |                                                                                    |                                                                                                 |                   |                                                                                                                             |                                                             |

xxvii Comparing COVID-19 Vaccine Schedule Combinations. University of Oxford. https://comcovstudy.org.uk/about-com-cov2

the set of the set of

A Foundation of Swiss Universities



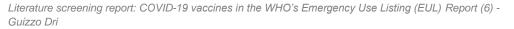
SWISS SCHOOL OF15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | *Spiko sposifio                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |                                                        | second dose for<br>individuals whose<br>first dose was<br>Sinovac <sup>xxvi</sup><br>CoronaVac/Conv<br>idecia                                                                                                                                                                                                                                                     |                                                      |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Vaccine<br>Immunogenicity | <u>GMCs of SARS-</u><br><u>CoV-2 anti-spike</u><br><u>IqG at 28 days</u><br><u>post booster:</u><br>Heterologous<br>(7133 ELU/mL, CI<br>6415-7932) vs.<br>Homologous<br>(14080 ELU/mL,<br>CI 12491-<br>15871) <sup>188</sup> .<br><u>SFC frequency</u><br>( <u>TOcell ELISpot):</u><br>Heterologous (99<br>SFC/10 <sup>6</sup> PBMCs)<br>vs.<br>Homologous (80<br>SFC/10 <sup>6</sup><br>PBMCs) <sup>188</sup> . | *Spike-specific<br>IgG antibodies:<br>Heterologous<br>(3602 BAU/mL)<br>Vs.<br>Homologous<br>(4189 BAU/mL) <sup>48</sup><br>*Neutralizing<br>antibodies:<br>Heterlogous<br>(100%) vs.<br>Homologous<br>(100%) <sup>189</sup> . | <u>RBD antibody</u><br><u>titres:</u><br>Heterologous<br>(7756.68<br>BAU/mL, Cl<br>7371.53-8161.96)<br>vs.<br>Homologous<br>(99.84 BAU/mL,<br>Cl 76.93-129.59)<br>at day 14 <sup>190</sup> .<br><u>IgG antibody</u><br><u>titres:</u><br>Heterologous<br>(3684 BAU/mL)<br>vs.<br>Homologous<br>(101.2 BAU/mL)<br>at day 14 <sup>190</sup> . | Not Applicable<br>(one dose<br>schedule)<br>For more<br>information refer<br>to booster section | Unknown (on-<br>going clinical<br>trial) <sup>49</sup> | CoronaVac/ChAd<br>Ox1 :<br><u>Anti-S Antibodies:</u><br>Heterologous (797<br>U/mL; 95% Cl,<br>598.7-1062)<br>Vs.<br>Homologous<br>CoronaVac (94.4<br>U/mL; 95% Cl :<br>76.1-122.1)<br>Vs.<br>Homolougous<br>ChAdOx1 (818<br>U/mL; 95% Cl:<br>662.5-1010) <sup>191</sup><br>CoronaVac/Conv<br>idecia<br><u>Neutralizing</u><br><u>antibodies :</u><br>Heterologous | No available<br>data<br>Ongoing trial <sup>187</sup> |

xxvi Malaysia to stop using Sinovac vaccine after supply ends - minister. *Reuters* [press release]. https://www.reuters.com/world/asia-pacific/malaysia-stopusing-sinovac-vaccine-after-supply-ends-minister-2021-07-15/



A Foundation of Swiss Universities




swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                            |                                                                                                                                                                                                                                                                                                                                                                                                  | *Results based on<br>immunosuppressed<br>population                                                                                                                                                                                                                                                                                                                                                | <u>Neutralizing</u><br><u>antibodies:</u><br>Heterologous<br>(100%) at day 14<br>vs.<br>Homologous<br>(30%) at day<br>14 <sup>190</sup> .                                                                                                                                                                                                                   |                                                                                                 |                                                         | <b>54.4 GMT</b> (95%<br>Cl, 37.9-78)<br>vs.<br>Homologous<br>CoronaVac<br><b>12.8 GMT</b> (95%<br>Cl, 9.3-17.5) <sup>192</sup>                                                                                                |                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Vaccines<br>Reactogenicity | Observed<br>increase in<br>systemic<br>reactogenicity<br>after boost in<br>heterologous<br>schedules in<br>comparison with<br>homologous<br>schedules <sup>188</sup><br><u>Adverse events in<br/>heterologous:</u><br>Adverse events<br>(90)<br>Grade 1 (54.4%)<br>Grade 2 (37.8%)<br>Grade 3 (7.8%)<br>Grade 3 (7.8%)<br>Grade 4 (0%)<br>Arthralgia,<br>Migraine, Back<br>Pain <sup>188</sup> . | *Adverse events<br>in heterologous<br>and homologous<br>vaccination<br>groups were very<br>similar <sup>189</sup> .<br>*Majority of<br>adverse events<br>self-reported were<br>Pain at injection<br>site, Swelling at<br>injection site,<br>Fever,<br>Headaches,<br>Fatigue, Chills, GI<br>effects, Myalgia,<br>Arthralgia <sup>189</sup> .<br>*Results based on<br>immunosuppressed<br>population | <u>Adverse events in</u><br><u>heterologous:</u><br>Headache (44%),<br>Myalgia (43%),<br>Malaise (42%),<br>Fever (2%),<br>Injection site pain<br>(88%), Induration<br>(35%), Erythema<br>(31%) <sup>190</sup> .<br><u>Severity of</u><br><u>adverse events in</u><br><u>heterologous:</u><br>Mild (68%),<br>Moderate (30%),<br>Severe (2%) <sup>190</sup> . | Not Applicable<br>(one dose<br>schedule)<br>For more<br>information refer<br>to booster section | Unknown (on-<br>going clinical<br>trial) <sup>193</sup> | CoronaVac/ChAd<br>Ox1:<br>Unknown<br>CoronaVac/Conv<br>idecia:<br>Convidecia<br>recipients reported<br>more adverse<br>reactions and<br>reported higher<br>occurrence of<br>solicited injection-<br>site pain) <sup>192</sup> | No available<br>data<br>Ongoing trial <sup>187</sup> |

💥 Universität 🖉 👘 Universität 🖁 Universität 🖁 SUPSI aw

A Foundation of Swiss Universities





SWISS SCHOOL OF15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                            | Adverse events<br>(81)<br>Grade 1 (59.3%)<br>Grade 2 (39.5%)<br>Grade 3 (1.2%)<br>Grade 4 (0%) <sup>188</sup> .                    |                                                                                                                        | BOOSTE                                                                                                                                | R DOSES                                                                                                                      |                                                                                                       |                                                                                                                                                       |                                                                                                                                                                |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vaccine<br>Schedule        | <u>Homologous:</u><br>BNT162b2/BNT16<br>2b2                                                                                        | <u>Homologous:</u><br>mRNA-<br>1273/mRNA-1273                                                                          | <u>Homologous:</u><br>ChAdOx1/ChAdO<br>X1                                                                                             | <u>Homologous:</u><br>Ad26.CoV.2.S/<br>Ad26.CoV.2.S<br><u>Heterologous:</u><br>BNT162b2/Ad26.<br>CoV.2.S                     | <u>Homologous:</u><br>SinoPharm/Sino<br>Pharm<br><u>Heterologous:</u><br>SinoPharm/BNT1<br>62b2       | <u>Homologous:</u><br>CoronaVac/Coro<br>naVac<br><u>Heterologous 1:</u><br>CoronaVac/ChAd<br>Ox1<br><u>Heterologous 2 :</u><br>CoronaVac/BNT1<br>62b2 | Homologous:<br>NVX-<br>CoV2373/NVX-<br>CoV2373<br>Heterologous:<br>Ongoing trial of<br>heterologous<br>booster shot<br>using NVX-<br>CoV2373 <sup>xxviii</sup> |
| Approved<br>Administration | <u>Israel:</u><br>12-year-old and<br>over can received<br>homologous<br>booster shot 5<br>months after full<br>jab <sup>xxix</sup> | Phase II booster<br>trial of three<br>booster doses are<br>ongoing <sup>194</sup><br>Moderna sought<br>FDA approval of | Preliminary results<br>on tolerability and<br>immunogenicity of<br>third dose of<br>ChAdOx1<br>vaccines showed<br>strong boost to the | Johnson &<br>Johnson has said<br>it will submit all of<br>their new data to<br>the FDA for<br>potential<br>consideration for | <u>UAE:</u><br>Offering booster<br>doses of Pfizer<br>and Sinopharm to<br>people who<br>received full | Turkey and the<br>United Arab<br>Emirates began<br>homologous<br>booster shots                                                                        | Ongoing phase<br>II trials <sup>196</sup><br>Results below<br>are based on                                                                                     |

xxviii COV-Boost Evaluating COVID-19 Vaccine Boosters. University of Southampton & NHS. https://www.covboost.org.uk/home

xxix Israel offers COVID-19 booster to all vaccinated people. *Reuters* [press release]. <u>https://www.reuters.com/world/middle-east/israel-offers-covid-19-booster-shots-all-vaccinated-people-2021-08-29/</u>



A Foundation of Swiss Universities



SWISS SCHOOL OF 15. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                         | <u>United States:</u><br>Starting<br>September, adults<br>who received<br>mRNA vaccine 8<br>months ago are<br>eligible for booster<br><u>Europe:</u><br>Starting in fall,<br>most European<br>countries are<br>planning on rolling<br>out booster shots<br>to<br>immunocompromi<br>sed and elder<br>populations <sup>xxx</sup> | its COVID-19<br>vaccine booster <sup>xxxi</sup><br><u>United States:</u><br>Starting<br>September, adults<br>who received<br>mRNA vaccine 8<br>months ago are<br>eligible for<br>booster. | immune<br>response <sup>195</sup>         | adding a booster<br>dose and<br>consideration to<br>authorize two-<br>dose regimen <sup>xxxii</sup> | Sinopharm jab ≥6<br>months ago                | Indonesia and<br>Thailand are<br>considering giving<br>homologous<br>booster shot to<br>HCW <sup>xxxiii</sup> | ongoing phase II<br>trial       |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------|
| Time-to-booster<br>dose | 6 months to 8<br>months after                                                                                                                                                                                                                                                                                                  | 6 months to 8<br>months after                                                                                                                                                             | 6-9 months after initial two-dose regimen | <u>Homologous:</u>                                                                                  | 6 months after<br>initial two-dose<br>regimen | <u>Homologous:</u><br>6 months to 12<br>months                                                                | 6 months after initial two-dose |

xxx A country-by-country guide to coronavirus vaccine booster plans. POLITICO [press reléase]. <u>https://www.politico.eu/article/vaccine-booster-coronavirus-covid-19-europe-delta-varian-who/</u>

xxxi Moderna seeks U.S. authorization for COVID-19 vaccine booster. *Reuters* [press release]. <u>https://www.reuters.com/business/healthcare-pharmaceuticals/moderna-submits-initial-data-covid-19-vaccine-booster-us-fda-2021-09-01/</u>

xxxii Two dose version of Johnson & Johnson shot 94% effective against Covid-19, study finds. CNN. <u>https://edition.cnn.com/2021/09/21/health/johnson-vaccine-two-doses-booster/index.html</u>

xxxiii Indonesia and Thailand consider booster shots amid doubts over Sinovac vaccine. *Reuters* [press release]. https://www.reuters.com/world/china/indonesia-thailand-consider-booster-shots-amid-doubts-over-sinovac-vaccine-2021-07-08/



A Foundation of Swiss Universities



. swiss school of15.10.2021 - Sabina Rodriguez Velásquez, Gabriela ривlic неаltн

|                | initial two-dose<br>regimen<br>Israel offers up to<br><b>5 months</b> after<br>initial two-dose<br>regimen                                 | initial two-dose<br>regimen                                                                                                            |                                                                                                                                                                                                                                                                                                          | 6 months after<br>one dose<br>regimen <sup>171</sup><br><u>Heterologous:</u><br>4 months after<br>initial two-dose<br>BNT162b2<br>regimen <sup>197</sup>                                                                                                                                                                 |                              | After primary<br>vaccination<br>8 months after<br>the primary<br>vaccination to<br>healthy adults ≥60<br>years<br><u>Heterologous 1:</u><br>21 to 26 days<br>after full jab of<br>CoronaVac<br><u>Heterologous 2:</u><br>6 months after<br>primary<br>vaccination of<br>CoronaVac | regimen ( <b>189</b><br>days) <sup>196</sup>                                                                                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunogenicity | <u>Neutralizing titers:</u><br>Elicits <b>&gt;5-8 more</b><br>for wild type after<br>6 months after 2 <sup>nd</sup><br>dose <sup>198</sup> | Booster doses<br>(mRNA1273 or<br>mRNA1273.351)<br>increased<br>neutralizing<br>antibody titers<br>against wild-<br>type <sup>199</sup> | <u>Antibody Levels:</u><br>Higher levels after<br>third dose (tlgG<br>EU <b>3746</b> ; IQR:<br>2047-6420) <sup>195</sup><br><u>Spike Cellular</u><br><u>Immune</u><br><u>Response:</u><br>Increased from<br><b>200 SFUx10<sup>6</sup></b><br><b>PBMC (IQR, 127-<br/>389)</b> after the<br>second dose to | <u>Homologous:</u><br>5X10 <sup>10</sup> vp booster<br>dose elicited <b>9-</b><br><b>fold</b> increase at<br>day 7 compared to<br>first dose after 29<br>days in 18-55-<br>year-olds <sup>171</sup><br>1.25X10 <sup>10</sup> vp<br>booster dose<br>elicited <b>6-7.7-fold</b><br>increase at day 28<br>compared to first | Ongoing trial <sup>193</sup> | Homologous:<br>Neutralizing<br>Antibodies:<br><b>60%</b> higher NAbs<br>activity against<br>wild-type<br>compared to 2-<br>doses <sup>175</sup><br>Anti-S IgG and<br>NAbs:<br><b>20-fold</b> increase 4<br>weeks post                                                             | <u>Anti-spike IgG:</u><br>Increase of <b>4.6-</b><br><b>fold</b> compared<br>to peak<br>response after<br>2 <sup>nd</sup> dose ( <b>Day</b><br><b>217 GMEU =</b><br><b>200408</b> ; 95% CI:<br>159796-<br>251342) <sup>196</sup><br><u>Wild-type</u><br><u>Neutralizing</u><br><u>Response:</u> |



A Foundation of Swiss Universities



swiss school of15.10.2021 - Sabina Rodriguez Velásquez, Gabriela public неагтн

| 399 SFUx10 <sup>6</sup><br>PBMC (IQR, 314<br>662) after the thi<br>one <sup>196</sup> |  |
|---------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------|--|



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

|                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |                                                                                                                   |                                                                                                                                                                                                                         |                              | factor of 46.6 but<br>IgG-N titers<br>decreased by<br>factor of 6.5 <sup>201</sup><br>Single booster<br>dose of<br>BNT162b2<br>induced higher<br>anti-spike RBD<br>IgG antibody<br>levels, compared<br>to single booster<br>dose of<br>CoronaVac <sup>166</sup>        |                                                                                                                                                                                                                                                                                                             |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunogenicity<br>against variants | Beta (B.1.351):<br>Elicits <b>15-21</b> more<br>neutralizing titers<br>for Beta variant<br>after 6 months<br>after 2 <sup>nd</sup> dose <sup>198</sup><br>Delta (B.1.671.2):<br>> <b>5-fold</b> increase<br>in neutralizing<br>titers against Delta<br>compared to dose<br>2 titers in 18–55-<br>year-olds<br>> <b>11-fold</b> increase<br>in neutralizing<br>titers against Delta | Preliminary results<br>of booster doses<br>of mRNA-1273<br>vaccine show<br>robust antibody<br>response against<br>Delta variant <sup>194</sup> | Third dose<br>provided higher<br>antibody titters<br>against Alpha,<br>Beta, and Delta<br>variants <sup>195</sup> | Homologous:<br>No available data<br><u>Heterologous:</u><br><b>10.9 to 21.2-fold</b><br>increase in<br>pseudovirus<br>neutralization<br>assay (one<br>volunteer did not<br>have any against<br>fB.1.351) <sup>197</sup> | Ongoing trial <sup>193</sup> | Homologous:<br>Beta (B.1.351):<br>3.0-fold decrease<br>in neutralizing<br>antibodies<br>compared to wild<br>type <sup>175</sup><br>Gamma (P.1):<br>3.1-fold decrease<br>in neutralizing<br>antibodies<br>compared to wild<br>type <sup>175</sup><br>Delta (B.1.671.2): | High levels of<br>functional<br>antibodies<br>against Alpha<br>(B.1.1.7), Beta<br>(B.1.351), and<br>Delta<br>(B.1.671.2) <sup>196</sup><br>$\underline{Delta}$<br>( <u>B.1.671.2)</u> :<br>Increase of <b>6.6-</b><br><b>fold</b> in antibody<br>response<br>compared to<br>Delta response<br>observed with |

💥 Universität 🖉 👘 Universität 🖁 Universität 🖁 SUPSI aw

A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

|                | compared to dose<br>2 titers in 65–85-<br>year-olds <sup>198</sup>    |                                                                                                                                                      |                                                                                         |                   |                              | 2.3-fold decrease<br>in neutralizing<br>antibodies<br>compared to wild<br>type<br>2.5-fold higher<br>neutralizing<br>potency than 2-<br>dose<br>vaccination <sup>175</sup><br><u>Heterologous 1:</u><br>Neutralizing<br>activity against the<br>wild type and<br>variant strains<br>showed higher<br>neutralizing<br>activity in the<br>following order:<br>wild type ><br>B.1.617.2 ><br>B.1.1.7 ><br>B.1.351 <sup>200</sup> | primary<br>vaccination <sup>196</sup>                                                                         |
|----------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Reactogenicity | Preliminary results<br>show consistent<br>tolerability <sup>198</sup> | Similar safety and<br>tolerability<br>compared to<br>second dose <sup>194</sup><br><u>Common solicited</u><br><u>local adverse</u><br><u>events:</u> | Lower<br>reactogenicity<br>after third dose<br>compared to first<br>dose <sup>170</sup> | No available data | Ongoing trial <sup>193</sup> | The third shot is<br>considered to be<br>safe <sup>174</sup> .<br><u>Common side</u><br><u>effects:</u><br>Pain at the<br>injection site.                                                                                                                                                                                                                                                                                     | Booster dose<br>was well<br>tolerated<br>Local and<br>systemic<br>reactogenicity<br>increased<br>between Dose |

Wolvershör  $u^{b}$  Universität  $\mathbb{B}$  UNIVERSITÉ UNIL universität  $\mathbb{B}$  SUPSI aw

A Foundation of Swiss Universities



45/76

|                                   |                                                                                                                                                               | Injection-site pain<br>(68.4% for<br>mRNA-1273.351,<br>90% for mRNA-<br>1273)<br>fatigue (36.8% for<br>mRNA-1273.351,<br>70% for mRNA-<br>1273)<br>headache (36.8%<br>for<br>mRNA1273.351,<br>55.0% for mRNA-<br>1273)<br>myalgia (31.6%<br>for mRNA-<br>1273, 351, 45.0%<br>for mRNA-<br>1273)<br>arthralgia (21.1%<br>for mRNA-1273,<br>50.0% for mRNA-<br>1273) |                             |                             |                               | Adverse events:<br>Unrelated to the<br>vaccination | 1, Dose 2, and<br>Dose 3<br><b>90%</b> of<br>symptoms were<br>rated as mild or<br>moderate <sup>196</sup> |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Protection<br>against<br>COVID-19 | Confirmed<br>Infection:<br>Youngest age<br>group (16-29):<br>17.6 (95% Cl,<br>15.6-19.9) lower<br>rate in booster<br>group <sup>202</sup><br>30-39 age group: | No available<br>information                                                                                                                                                                                                                                                                                                                                        | No available<br>information | No available<br>information | No available<br>information   | No available<br>information                        | No available<br>information                                                                               |
|                                   | ž                                                                                                                                                             | Basel Universitär                                                                                                                                                                                                                                                                                                                                                  | E UNIVERSITE UNL            | unine 🌚 🖻 🌐                 | Universität <b>B</b> SUPSI aw | -                                                  |                                                                                                           |

A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

46/76

| 8.8 (95% CI, 8.2-<br>9.5) lower rate in<br>booster group <sup>202</sup>                                                                                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 40-49 age group:<br>9.7 (95% Cl, 9.2-<br>10.4) lower rate in<br>booster group <sup>202</sup>                                                                                                       |  |  |  |
| 50-59 age group:<br>12.2 (95% CI,<br>11.4-13.1) lower<br>rate in booster<br>group <sup>202</sup>                                                                                                   |  |  |  |
| Oldest age group<br>( $\geq 60$ ):<br>11.3 (95% Cl,<br>10.4-12.3) lower<br>rate in booster<br>group <sup>203</sup><br>12.4 (95% Cl,<br>11.9-12.9) lower<br>rate in booster<br>group <sup>202</sup> |  |  |  |
| <u>Severe Illness:</u><br>40-59 age group:<br>22.0 (95% Cl,<br>10.3-47.0) lower                                                                                                                    |  |  |  |



A Foundation of Swiss Universities



SWISS SCHOOL OF15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|       | rate in booster<br>group <sup>202</sup><br>Older population<br>( $\geq 60$ ):<br>19.5 (95% Cl,<br>12.9-29.5) lower<br>rate in booster<br>group <sup>203</sup><br>18.7 (95% Cl,<br>15.7-22.4) lower<br>rate in booster<br>group <sup>202</sup>             |  |  |                                                                                                                                                                                                                                                                 |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Other | Detailed report<br>from Pfizer<br>regarding booster<br>doses can be<br>found here:<br>https://www.fda.go<br>v/media/152161/d<br>ownload<br>14-20 days after<br>booster, marginal<br>effectiveness<br>increases to <b>70-</b><br><b>84%</b> <sup>204</sup> |  |  | For more detailed<br>information<br>regarding<br>immunogenicity of<br>third dose refer to<br>study <sup>xxxiv</sup><br>Ongoing clinical<br>trial examining the<br>immunogenicity<br>and safety of a<br>third dose<br>vaccination with<br>ChAdOx1 or<br>BNT162b2 |  |

xxxiv A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.09.02.21261735v1</u>



A Foundation of Swiss Universities



SWISS SCHOOL OF15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|  |  |  | vaccine among<br>adults who<br>received full jab of<br>CoronaVac <sup>xxxv</sup> |  |
|--|--|--|----------------------------------------------------------------------------------|--|
|  |  |  | COloria vac                                                                      |  |

xxxv Third Dose Vaccination with AstraZeneca or Pfizer COVID-19 Vaccine Among Adults Received Sinovac COVID-19 Vaccine. *ClinicalTrials.gov.* <u>https://clinicaltrials.gov/ct2/show/NCT05049226</u>



A Foundation of Swiss Universities



## ANNEXES

|                          | BNT162b2/<br>COMIRNATY<br>(Pfizer-<br>BioNTech, USA)                                                                                      | Spikevax/<br>Moderna COVID-<br>19 Vaccine/<br>mRNA-1273<br>(Moderna, USA)                                                                        | Vaxzevria/<br>ChAdOx1 nCoV-<br>19/ AZD1222/<br>Covishield<br>(AstraZeneca/Ox<br>ford, UK, India)                            | Janssen COVID-<br>19<br>vaccine/Johnson<br>& Johnson<br>(Janssen, USA)                                                                           | Sinopharm/BBIB<br>P-CorV, China                                                                                                                           | Sinovac<br>CoronaVac,<br>China                                                                                                                 | Novavax/<br>NVX-CoV2373                                                                            |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| FURTHER INFORMATION      |                                                                                                                                           |                                                                                                                                                  |                                                                                                                             |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                                |                                                                                                    |  |  |
| Storage<br>conditions    | 2°C to 8 °C (for 1 month)                                                                                                                 | 2°C to 8 °C (for 1 month)                                                                                                                        | 2°C until 8 °C                                                                                                              | 2°C to 8 °C (for 3 months)                                                                                                                       | 2°C until 8 °C                                                                                                                                            | 2°C until 8 °C                                                                                                                                 | 2°C to 8 °C                                                                                        |  |  |
| Approving<br>authorities | FDA<br>(11.12.20) <sup>xxxvi</sup> ;<br>EMA (21.12.20);<br>WHO EUL<br>(31.12.20); and<br>list of countries<br>(including<br>Switzerland – | FDA (18.12.20);<br>EMA (06.01.21);<br>WHO EUL<br>(30.04.21); and<br>list of 51 countries<br>(including<br>Switzerland –<br>approved<br>12.01.21) | FDA (awaiting on<br>approval);<br>EMA (29.01.21);<br>WHO EUL<br>(15.02.21); and<br>list of 121<br>countries<br>(Switzerland | FDA (27.02.21);<br>EMA (11.03.21),<br>WHO EUL<br>(12.03.21), and<br>list of 59 countries<br>(including<br>Switzerland –<br>approved<br>22.03.21) | WHO EUL<br>(07.05.21); and<br>list of 55 countries<br>(e.g., Argentina,<br>Bahrain, Brazil,<br>China, Indonesia,<br>United Arab<br>Emirates,<br>Zimbabwe) | WHO EUL<br>(01.06.21), and<br>list of 33 countries<br>(e.g., Albania,<br>Chile, Egypt,<br>Hong Kong,<br>Malaysia, Tunisia,<br>Turkey, Ukraine) | Waiting on<br>approval<br>(Not-yet-<br>approved by<br>countries or<br>WHO for<br>emergency<br>use) |  |  |

xxxvi Pfizer-BioNTech's Comirnaty Vaccine received full FDA approval on 23 August 2021 for people age 16 and above, moving it beyond emergency use status. <u>https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine</u>



A Foundation of Swiss Universities



SWISS SCHOOL OF15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                                  | approved on 20.12.20)                                                                                                                                                                                |                                                                                                                                                                             | awaiting on<br>approval)                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                                      |                                                                                                                                                                             | EF                                                                                                                                                                                                                 | FICACY                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                         |
| Single<br>dose <sup>xxxvii</sup> | <b>52%</b> (95% CI,<br>29.5 to 68.4;<br>starting at 12<br>days) or 82.2%<br>(75.1 to 87.3;<br>starting at ≥14<br>days) <sup>205</sup> .<br><b>91%</b> (95% CI, 85-<br>94) <sup>206</sup> .           | <b>95.2%</b> (95% CI,<br>91.2.8 to 97.4;<br>starting at >14<br>days) <sup>51</sup> .                                                                                        | <b>72.8%</b> (starting at 22 days up to 60 days) <sup>207</sup> .<br><b>88%</b> (95% CI, 75-94) <sup>206</sup> . <sup>xxxviii</sup>                                                                                | Single dose<br>vaccine                                                                                                                                                                   | Unknown                                                                                                                                                                                                    | <b>35.1%</b> (95% CI, -<br>6.6 to -60.5)<br>[conducted in a<br>setting with high<br>P.1<br>transmission] <sup>208</sup> .                                                          | <b>83.4%</b> (95% CI,<br>73.6-89.5) starting<br>at ≥14 days <sup>59</sup>                                                                                                                               |
| Two doses <sup>xxxix</sup>       | <b>95.0%</b> (95% Cl,<br>90.3-97.6) starting<br>at ≥7 days in<br>population without<br>prior SARS-CoV-<br>2 infection <sup>65</sup><br><b>94.6%</b> (95% Cl,<br>89.9-97.3) starting<br>at ≥7 days in | <ul> <li>94.1% (95% CI,<br/>89.3-96.8) after<br/>median follow-up<br/>of less than 63<br/>days<sup>51</sup></li> <li>93.2% (95% CI,<br/>91.0-94.8)<sup>209</sup></li> </ul> | <ul> <li>63.1% (95% CI,<br/>51.8-71.7) starting<br/>at ≥14 days for<br/>two standard<br/>doses<sup>207</sup></li> <li>80.7% (95% CI,<br/>62.1-90.2) starting<br/>at ≥14 days for<br/>first low dose and</li> </ul> | <b>66.9%</b> (95% CI<br>59.0-73.4) after<br>14 days and<br><b>66.1%</b> (95% CI<br>55.0-89.1) after<br>28 days for VE<br>against moderate-<br>severe-critical<br>COVID-19 <sup>210</sup> | After 14 days,<br>efficacy against<br>symptomatic<br>cases was <b>72.8%</b><br>(95% CI 58.1-<br>82.4; in WIV04<br>vaccine) or <b>78.1%</b><br>(95% CI 64.8 to<br>86.3; in HBO2<br>vaccine). <sup>126</sup> | After 14 days,<br>efficacy against<br>symptomatic<br>cases was <b>50.7%</b><br>(95% CI 35.9 to 0-<br>62.0). <sup>57</sup><br>99.17% of NAb<br>titres were above<br>or equal to the | <ul> <li>89.7% (95% CI,<br/>80.2-94.6) starting<br/>at ≥7 days<sup>59</sup></li> <li>90.4% (95% CI,<br/>82.9-94.6)<sup>212</sup></li> <li>100% (95% CI,<br/>87-100) against<br/>moderate-to-</li> </ul> |

xxxvii Against SARS-COV-2 infection

xxxviii Conducted between 8 December 2020 and 8 February 2021. Study sample = ≤1 million participants.

xxxix Against SARS-CoV-2 infection.



A Foundation of Swiss Universities



|                                      | population with or<br>without prior<br>infection <sup>65</sup>                                                  | <u>Against severe</u><br><u>disease:</u><br><b>98.2%</b> (95% CI,<br>92.8-99.6) <sup>209</sup>                                      | standard second<br>dose <sup>207</sup><br><b>66.7%</b> (95% CI,<br>57.4-74.0) starting<br>at $\geq$ 14 days for<br>pooled analysis<br>efficacy <sup>207</sup>                                                                | <b>76.7%</b> (95% CI<br>54.6 to 89.1) after<br>14 days and<br><b>85.4%</b> (95% CI<br>54.2 to 96.9) after<br>28 days for VE<br>against severe-<br>critical COVID-<br>19 <sup>210</sup> |                                                                                                                                                                                                        | Nab positivity cut-<br>off (20 units)<br>against wild-<br>type <sup>211</sup> .                                                                                                                                    | severe COVID-<br>19 <sup>212</sup><br><b>100%</b> (95% CI,<br>34.6-100) against<br>severe COVID-<br>19 <sup>212</sup>                                                                          |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Against<br>asymptomatic<br>infection | <b>90%</b> (starting at<br>14 days)<br>regardless of<br>symptom status <sup>213</sup>                           | <b>63.0%</b> (95% CI,<br>56.6-68.5) <sup>209</sup>                                                                                  | Statistically non-<br>significant<br><b>reduction of</b><br><b>22.2%</b> (95% CI -<br>9.9 to 45.0) for<br>asymptomatic<br>cases                                                                                              | At day 71, vaccine<br>efficacy against<br>asymptomatic<br>infections was<br><b>65.5%</b> (95% CI<br>39.9 to 81.1) <sup>210</sup> .                                                     | Efficacy against<br>symptomatic and<br>asymptomatic<br>cases was <b>64%</b><br>(95% CI 48.8 to<br>74.7; in WIV04<br>vaccine) or 73.5%<br>(95% CI 60.6 to<br>82.2; in HBO2<br>vaccine) <sup>126</sup> . | Unknown                                                                                                                                                                                                            | Unknown                                                                                                                                                                                        |
|                                      | -                                                                                                               |                                                                                                                                     | EFFICACY A                                                                                                                                                                                                                   | GAINST VARIANTS                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                                                                                    |                                                                                                                                                                                                |
| Alpha (B.1.1.7)                      | Two doses of the vaccine effectively neutralize the B.1.1.7 variant and the D614G substitution <sup>214</sup> . | <b>NAbs remained</b><br><b>high</b> and<br>consistent with<br>titres of the<br>wildtype for the<br>B.1.1.7 variant <sup>215</sup> . | <b>70.4%</b> (95% CI,<br>43.6-84.5) against<br>symptomatic<br>infection with<br>alpha variant<br>(B.1.1.7); <b>28.9%</b><br>(95% CI, -77.1 to<br>71.4) against<br>asymptomatic<br>infection with<br>B.1.1.7 <sup>162</sup> . | <b>3.6-fold</b> reduction<br>in neutralization<br>capacity when<br>compared to wild-<br>type.                                                                                          | Demonstrated<br>reduced<br>neutralizing<br>capacity.<br>However, there<br>were no<br>differences in the<br>NAbs titres<br>against B.1.351 in<br>vaccinated<br>individuals vs.                          | <ul> <li>10.4-fold<br/>reduction in<br/>neutralization<br/>capacity when<br/>compared to<br/>natural infection<br/>sera<sup>211</sup>.</li> <li>85.83% of NAb<br/>titres were above<br/>or equal to the</li> </ul> | Two dose efficacy<br>against the<br>B.1.1.7 variant<br><b>86.3%</b> (95% CI,<br>71.3-93.5) <sup>59</sup><br><b>93.6%</b> (95% CI,<br>81.7-97.8) against<br>the Alpha<br>variant <sup>212</sup> |



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                |                                                                                                                                                                                                                                                    |                                                                                                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | those naturally<br>infected,<br>suggesting the<br>vaccine has a<br>similar level of<br>protection against<br>infection as<br>natural<br>infections <sup>216</sup> . | Nab positivity cut-<br>off (20 units)<br>against wild-<br>type <sup>211</sup> .<br>Neutralization<br>decreased by <b>4.1-</b><br><b>fold</b> when<br>compared to wild-<br>type <sup>217</sup> .                                                                                                                                                       |                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Beta (B.1.351) | Neutralization<br>was <b>diminished</b><br><b>by a factor of 5</b> .<br>Despite this, the<br>BNT162b2 mRNA<br>vaccine still<br>provides some<br>protection against<br>B.1.351 <sup>218</sup><br><b>100%</b> (95% CI,<br>53.5-100) <sup>219</sup> . | NAbs were <b>6-fold</b><br>lower.<br>Nevertheless,<br>NAbs were still<br>found to be<br>protective <sup>215</sup> . | Two doses of the vaccine had no efficacy against the B.1.351 (VE = $21.9\%$ ; 95% CI, - 49.9 to 59.8) <sup>220</sup> . | Efficacy against<br>moderate-severe-<br>critical Covid-19<br>due to the variant<br>was <b>52.0%</b> (>14<br>days) and <b>64.0%</b><br>(>28 days).<br>Efficacy against<br>severe-critical<br>COVID-19 was<br><b>73.1%</b> (>14 days)<br>and <b>81.7%</b> (>28<br>days) <sup>210</sup> .<br>Demonstrated<br><b>3.6-fold</b> reduction<br>in neutralization<br>sensitivity <sup>221</sup> .<br>Neutralization<br>titres were<br>decreased by <b>6.7-</b><br><b>fold</b> <sup>222</sup> . | No published data                                                                                                                                                   | NT <sub>GM</sub> <b>35.03 (95%</b><br><b>CI, 27.46-44.68</b> );<br><b>8.75-fold</b><br>reduction in<br>neutralization<br>capacity when<br>compared to<br>natural infection<br>sera <sup>211</sup> .<br><b>82.5%</b> of NAb<br>titres were above<br>or equal to the<br>Nab positivity cut-<br>off (20 units)<br>against wild-<br>type <sup>211</sup> . | <b>51.0%</b> (95% CI, -<br>0.6-76.2) efficacy<br>against B.1.351<br>variant <sup>223</sup> |



A Foundation of Swiss Universities



SWISS SCHOOL OF 15. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

| Gamma (P.1)     | Single dose:<br>≥21 days: 83%<br>against<br>hospitalization<br>and death <sup>224</sup> .<br><u>Two doses</u> :<br>≥14 days: 98%<br>against<br>hospitalization<br>and death <sup>224</sup> . | <b>3.2-fold</b> reduction<br>in neutralization<br>capacity when<br>compared to wild-<br>type <sup>225</sup> . | Single dose:<br>≥21 days: 94%<br>against<br>hospitalization<br>and death <sup>224</sup> .<br>Two doses: 64%<br>(95% CI, -2-87)<br>[n=18] <sup>226</sup><br>Efficacy against<br>Zeta (P.2) [2<br>doses]: 69% (95%<br>CI, 55-78) <sup>226</sup> | Demonstrated<br><b>3.4-fold</b> reduction<br>in neutralization<br>sensitivity <sup>221</sup> .                                                                                              | No published data                                                                                                                                                                                                                                                                                            | <b>49.6%</b> against P.1<br>(>14 days after<br>1st dose) <sup>208</sup> .<br>Neutralization<br>decreased by <b>7.5-</b><br><b>fold</b> when<br>compared to wild-<br>type <sup>217</sup> .                               | No available data |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Delta (1.671.2) | <b>Reduced NAb</b><br>activity relative to<br>B.1.1.7 strain <sup>227</sup> .                                                                                                                | <b>2.1-fold</b> reduction in neutralization capacity when compared to wild-type <sup>225</sup> .              | Single dose:<br>$\geq 21$ days: <b>90%</b><br>against<br>hospitalization<br>and death <sup>224</sup> .                                                                                                                                        | Demonstrated<br><b>1.6-fold</b> reduction<br>in neutralization<br>sensitivity <sup>221</sup> .<br>Neutralization<br>titres were<br>decreased by <b>5.4-</b><br><b>fold</b> <sup>222</sup> . | Demonstrated<br>reduced<br>neutralizing<br>capacity.<br>However, there<br>were no<br>differences in the<br>NAbs titres<br>against B.1.617.2<br>in vaccinated<br>individuals vs.<br>those naturally<br>infected,<br>suggesting the<br>vaccine has a<br>similar level of<br>protection against<br>infection as | NT <sub>GM</sub> <b>24.48</b> (95%<br>CI,19.2-31.2) <sup>211</sup> .<br><b>69.17%</b> of NAb<br>titres were above<br>or equal to the<br>Nab positivity cut-<br>off (20 units)<br>against wild-<br>type <sup>211</sup> . | No available data |



A Foundation of Swiss Universities



SWISS SCHOOL OF15.10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                                                    |                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                               | natural<br>infections <sup>216</sup> .                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                    | PHASE III TRIALS RESULTS <sup>x1</sup>                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                |  |  |  |
| Number of<br>participants<br>(vaccine/<br>placebo) | 43,448 (21,720/<br>21,728) <sup>65</sup>                                                                                                                                     | 30,420<br>(15,210/15,210)⁵¹                                                                                                                                                                          | 17,178<br>(8597/8581) <sup>207</sup>                                                                                                                                           | 39,321<br>(19,630/19,691) <sup>210</sup>                                                                                                                                      | 26,917<br>(13,459/13458);<br>or 26,914<br>(13,465/13,458) <sup>126</sup>                                                                                        | 9,823<br>(4,953/4,870) <sup>57</sup>                                                                                      | 14,039<br>(7,020/7,019) <sup>59</sup>                                                                                                                                                          |  |  |  |
| Total COVID-19<br>cases<br>(vaccine/<br>control)   | 170(8/162) <sup>65</sup>                                                                                                                                                     | 196 (11/185) <sup>51</sup>                                                                                                                                                                           | 332 (84/248) <sup>207</sup>                                                                                                                                                    | 464 (116/348) <sup>210</sup>                                                                                                                                                  | 121(26/95) or<br>116(21/95) <sup>126</sup>                                                                                                                      | 253(85/168) <sup>57</sup>                                                                                                 | 106(10/96) <sup>59</sup>                                                                                                                                                                       |  |  |  |
| Efficacy<br>estimates in<br>Phase III trials       | Starting from 7<br>days after 2nd<br>dose: <b>95.0%</b><br>(95% CI, 90.3 to<br>97.6) in<br>population without<br>prior SARS-CoV-<br>2 infection.<br>Efficacy of <b>94.6%</b> | After a median<br>follow-up of less<br>than 63 days:<br>Efficacy of <b>94.1%</b><br>(95% CI, 89.3 to<br>96.8; P<0.001).<br><b>100%</b> among<br>adolescents (12 to<br><18 years old) <sup>51</sup> . | Two standard<br>doses: efficacy<br>was <b>63-1%</b> (95%<br>CI 51.8 to 71.7;<br>$\geq$ 14 days) while<br>those with first low<br>dose and<br>standard 2nd<br>dose the efficacy | VE against<br>moderate-severe-<br>critical Covid-19<br>was <b>66.9%</b> (95%<br>CI 59.0 to 73.4)<br>after 14 days post<br>vaccine<br>administration,<br>and <b>66.1%</b> (95% | After 14 days,<br>efficacy against<br>symptomatic<br>cases was <b>72.8%</b><br>(95% CI 58.1 to<br>82.4; in WIV04<br>vaccine) or <b>78.1%</b><br>(95% CI 64.8 to | After 14 days,<br>efficacy against<br>symptomatic<br>cases was <b>50.7%</b><br>(95% CI 35.9 to 0-<br>62.0). <sup>57</sup> | <b>83.4%</b> (95% CI,<br>73.6-89.5) starting<br>at ≥14 days after<br>first dose <sup>59</sup><br><b>89.7%</b> (95% CI,<br>80.2-94.6) starting<br>at ≥7 days after<br>second dose <sup>59</sup> |  |  |  |

x<sup>I</sup> Phase III trials were conducted between 27 July and 14 November 2020 for BNT162b2/ COMIRNATY, 27 July and 23 October 2020 for Spikevax/ Moderna, 23 April and 6 December 2020 for Vaxzevria/ ChAdOx1 nCoV-19/ AZD1222/ Covishield, 21 September 2020 and 22 January 2021 for Janssen Covid-19 vaccine/ Johnson & Johnson, 16 July and 20 December 2020 for Sinopharm/ BBIB-CorV, 21 July and 16 December 2020 for the Sinovac/ CoronaVac vaccine, and 28 September 2020 and 28 November 2020 for the Novavax vaccine. All trials were conducted prior to the transmission of the more contagious variant strains, particularly the delta variant (B.1.617.2). Studies are currently ongoing to determine the effectiveness of the vaccines against the delta variant.



A Foundation of Swiss Universities



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

|                                                          | (95% CI, 89.9 to<br>97.3) in<br>population with or<br>without prior<br>infection. <b>100%</b><br>among<br>adolescents (12-<br>15 years old) <sup>65</sup> .                                                                                     |                                                                                                                                                                                                                                                                                                                      | was <b>80.7%</b> (95%<br>Cl 62.1 to 90.2).<br>Pooled analysis<br>efficacy was<br><b>66.7%</b> (95% Cl<br>57.4 to 74.0). For<br>any nucleic acid<br>amplification test-<br>positive swab:<br>efficacy was<br>54.1% (95% Cl<br>44.7 to 61.9) <sup>207</sup> .                                       | CI 55.0 to 89.1)<br>after 28 days. VE<br>against severe-<br>critical COVID-19<br>cases was <b>76.7%</b><br>(95% CI 54.6 to<br>89.1) after 14<br>days and <b>85.4%</b><br>(95% CI 54.2 to<br>96.9) after 28<br>days <sup>210</sup> .                                                                           | 86.3; in HBO2<br>vaccine) <sup>126</sup> .                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                       |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy<br>against<br>hospitalization<br>and death      | <b>100%</b> (after 7<br>days) <sup>65</sup>                                                                                                                                                                                                     | <b>100%</b> (≥14<br>days) <sup>51</sup>                                                                                                                                                                                                                                                                              | <b>100%</b> (after 21 days) <sup>207</sup>                                                                                                                                                                                                                                                        | <b>76.7%</b> (≥14 days)<br>or <b>85.4%</b> (≥28<br>days) <sup>210</sup>                                                                                                                                                                                                                                       | <b>100% (</b> >14<br>days) <sup>126</sup>                                                                                                                                                                       | <b>100%</b> (>14<br>days) <sup>57</sup>                                                                                                                                                                             | <b>100%</b> (after 7<br>days) <sup>59</sup> .                                                                                                                         |
| Phase III<br>clinical trial<br>serious<br>adverse events | Serious adverse<br>events were<br>observed in a<br>similar proportion<br>of vaccine (0.6%)<br>and placebo<br>(0.5%) recipients.<br>These events also<br>occur at a similar<br>frequency within<br>the general<br>population <sup>48,228</sup> . | The frequency of<br>grade 3 adverse<br>events was similar<br>in both the<br>vaccine (1.5%)<br>and placebo<br>groups (1.3).<br>Serious adverse<br>events were<br>observed in a<br>similar proportion<br>in both groups<br>(0.6%). 3 Bell's<br>Palsy cases<br>occurred in the<br>vaccine group and<br>one Bell's Palsy | Serious adverse<br>events were<br>balanced across<br>the study arms.<br>79 cases occurred<br>in the vaccine<br>group and 89<br>cases in the<br>placebo group – 3<br>cases were<br>considered<br>related to the<br>experimental or<br>control vaccine<br>(out of 11 636<br>vaccine<br>recipients): | Serious adverse<br>events were<br>reported in 0.4%<br>of vaccine<br>recipients and<br>0.4% of placebo<br>recipients. Seven<br>of the serious<br>adverse events<br>were considered<br>to be related to<br>the vaccine:<br>Guillain-Barré<br>syndrome (1),<br>pericarditis (1),<br>brachial radiculitis<br>(1), | A cross-sectional<br>survey collected<br>data on adverse<br>events following<br>vaccination in the<br>UAE - none of the<br>symptoms were of<br>serious nature or<br>required<br>hospitalization <sup>56</sup> . | Overall incidence<br>of serious<br>adverse events<br>was 0.5% (31 in<br>placebo group<br>and 33 in vaccine<br>group). All<br>adverse events<br>were determined<br>to be unrelated to<br>the vaccine <sup>57</sup> . | Phase II:<br>Nine serious<br>adverse events<br>were reported,<br>only one of which<br>was assessed as<br>related to the<br>vaccine: acute<br>colitis <sup>157</sup> . |



A Foundation of Swiss Universities



|          |                                                                                                                 | case occurred in<br>the placebo<br>group <sup>51</sup> .                                                | transverse<br>myelitis,<br>haemolytic<br>anaemia and a<br>case of fever<br>higher than 40°C<br><sup>53</sup> . | hypersensitivity<br>(1), Bell's Palsy<br>(2), & severe<br>generalized<br>weakness, fever &<br>headache (1) <sup>210</sup> .                                                                                                                                                                                               |                                                                                                                                                   |                                                                                                                                                                                                          |
|----------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                 |                                                                                                         | PHASE II                                                                                                       | I TRIAL OTHER                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                          |
| Comments | Specific<br>populations were<br>excluded (HIV<br>and<br>immunocompromi<br>sed patients, and<br>pregnant women). | Calculation of<br>efficacy were not<br>based on the total<br>number of<br>confirmed Covid-<br>19 cases. |                                                                                                                | 2-DOSE EFFICACY<br>Efficacy against<br>symptomatic<br>(moderate to<br>severe/ critical)<br>SARS-CoV-2<br>infection<br>94% (95% CI, 58-<br>100) in the US.<br>75% (95% CI, 55-<br>87) globally. <sup>11</sup><br>Efficacy against<br>severe/ critical<br>SARS-CoV-2<br>infection<br>100% (95% CI,<br>33-100) <sup>11</sup> | Only 2 severe<br>cases occurred in<br>the control group<br>and none in the<br>vaccine group<br>(very few cases to<br>get a reliable<br>estimate). | Novavax is<br>currently awaiting<br>FDA, EMA, and<br>WHO EUL<br>approval.<br>Upcoming<br>information<br>regarding results<br>of clinical trials or<br>approval will be<br>updated in<br>upcoming reports |



A Foundation of Swiss Universities

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

56/76



SWISS SCHOOL OF 5. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|            | VACCINE PRODUCTION SITES                                               |                                                                                              |                                                                                                                   |                                                                                           |                                                                               |                                                |                          |  |  |  |  |
|------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|--------------------------|--|--|--|--|
|            | BNT162b2/<br>COMIRNATY<br>(Pfizer-<br>BioNTech,<br>USA) <sup>xli</sup> | Spikevax/<br>Moderna COVID-<br>19 Vaccine/<br>mRNA-1273<br>(Moderna,<br>USA) <sup>xlii</sup> | Vaxzevria/<br>ChAdOx1 nCoV-<br>19/ AZD1222/<br>Covishield<br>(AstraZeneca/Oxf<br>ord, UK, India) <sup>xliii</sup> | Janssen COVID-<br>19<br>vaccine/Johnson<br>& Johnson<br>(Janssen,<br>USA) <sup>xliv</sup> | Sinopharm/BBIB<br>P-CorV, China <sup>xlv</sup>                                | Sinovac<br>CoronaVac,<br>China <sup>xlvi</sup> | Novavax/ NVX-<br>CoV2373 |  |  |  |  |
| EUL holder | BioNTech<br>Manufacturing<br>GmbH<br>(Germany)                         | ModernaTX, Inc.<br>(USA) <sup>1</sup><br>Moderna Biotech<br>(Spain) <sup>2</sup>             | AstraZeneca AB<br>(Sweden)                                                                                        | Janssen-Cilag<br>International NV<br>(Belgium)                                            | Beijing Institute of<br>Biological<br>Products Co., Ltd.<br>(BIBP)<br>(China) | Sinovac Life<br>Sciences Co., Ltd.<br>(China)  | Novavax (USA)            |  |  |  |  |

xivi WHO recommendation of Sinovac COVID-19 vaccine (Vero Cell [Inactivated]) – CoronaVac. WHO. <u>https://extranet.who.int/pqweb/vaccines/who-recommendation-sinovac-covid-19-vaccine-vero-cell-inactivated-coronavac</u>



A Foundation of Swiss Universities

xli WHO recommendation BioNTech Tozinameran – COVID-19 mRNA vaccine (nucleoside modified) – COMIRNATY. WHO. <u>https://extranet.who.int/pqweb/vaccines/who-recommendation-covid-19-mrna-vaccine-nucleoside-modified-comirnaty</u>

x<sup>iii</sup> 1. WHO recommendation ModernaTX, Inc/USFDA COVID-19 mRNA vaccine (nucleoside modified). WHO. <u>https://extranet.who.int/pgweb/vaccines/who-recommendation-modernatx-incusfda-covid-19-mrna-vaccine-nucleoside-modified</u>

<sup>2.</sup> WHO recommendation Moderna COVID-19 mRNA Vaccine (nucleoside modified). WHO. https://extranet.who.int/pgweb/vaccines/covid-19-mrna-vaccine-nucleoside-modified

xiiii WHO recommendation AstraZeneca/ EU approved sites COVID-19 vaccine (ChAdOx1-S) [recombinant]. WHO. <u>https://extranet.who.int/pqweb/vaccines/covid-19-vaccine-chadox1-s-recombinant-0</u>

x<sup>liv</sup> WHO recommendation Janssen-Cilag International NV (Belgium) COVID-19 Vaccine (Ad26.COV2-S [recombinant]). WHO. <u>https://extranet.who.int/pqweb/vaccines/who-recommendation-janssen-</u> cilag-international-nv-belgium-covid-19-vaccine-ad26cov2-s

xIV WHO recommendation COVID-19 vaccine BIBP/Sinopharm. WHO. https://extranet.who.int/pgweb/vaccines/who-recommendation-covid-19-vaccine-bibp

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch



swiss school of 5.10.2021 - Sabina Rodriguez Velásquez, Gabriela public health

| Production<br>sites (Drug<br>substance) | BioNTech<br>Manufacturing<br>GmbH (Mainz,<br>Germany)<br>BioNTech<br>Manufacturing<br>Marburg<br>(Marburg,<br>Germany)<br>Rentschler<br>Biopharma SE<br>(Laupheim,<br>Germany)<br>Wyeth BioPharma<br>Division of Wyeth<br>Pharmaceuticals<br>(USA) | Lonza Biologics,<br>Inc., (USA) <sup>1</sup><br>Moderna TX, Inc.<br>(USA) <sup>1</sup><br>Lonza AG<br>(Switzerland) <sup>2</sup>                                                         | Henogen S.A<br>(Belgium)<br>Catalent<br>Maryland, Inc.<br>(USA)<br>Oxford Biomedica<br>(UK) Ltd.<br>(United Kingdom)<br>SK Bioscience<br>(Republic of<br>Korea)<br>Halix B.V<br>(Netherlands)<br>WuXi Biologics<br>(China) | Janssen Vaccines<br>& Prevention B.V.<br>(The Netherlands)<br>Janssen Biologics<br>B.V.<br>(The Netherlands)<br>Emergent<br>Manufacturing<br>Operations<br>Baltimore LLC<br>(USA) | Beijing Institute of<br>Biological<br>Products Co., Ltd.<br>(China) | Sinovac Life<br>Sciences Co., Ltd.<br>(China) | Novavax<br>(Bohumil, Czech<br>Republic) |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|
| Production<br>sites (Drug<br>product)   | Baxter Oncology<br>GmbH (Halle/<br>Westfallen,<br>Germany)<br>BioNTech<br>Manufacturing<br>GmbH (Mainz,<br>Germany)<br>Pfizer<br>Manufacturing<br>Belgium NV                                                                                       | Baxter<br>Pharmaceutical<br>Solutions, LLC.<br>(USA) <sup>1</sup><br>Catalent Indiana,<br>LLC. (USA) <sup>1</sup><br>Rovi Pharma<br>Industrial<br>Services, S.A.<br>(Spain) <sup>2</sup> | Catalent Anagni<br>(Italy)<br>CP<br>Pharmaceuticals<br>(United Kingdom)<br>IDT Biologika<br>(Germany)<br>SK Bioscience<br>(Republic of<br>Korea)                                                                           | Janssen Biologics<br>B.V.<br>(The Netherlands)<br>Janssen<br>Pharmaceutica<br>NV (Belgium)<br>Aspen SVP.<br>(South Africa)<br>Catalent Indiana<br>LLC. (USA)                      | Beijing Institute of<br>Biological<br>Products Co., Ltd.<br>(China) | Sinovac Life<br>Sciences Co., Ltd.<br>(China) | Novavax<br>(Bohumil, Czech<br>Republic) |

Weiversitär u<sup>b</sup> PR @ UNIVERSITÉ UniL mile OF E UNIVERSITÉ SUPSI aw

A Foundation of Swiss Universities



SWISS SCHOOL OF 15. 10.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

|                      | (Belgium)<br>Novartis Pharma<br>Stein AG<br>(Switzerland)<br>Mibe GmbH<br>Arzneimittel<br>(Brehna,<br>Germany) |   | Universal Farma,<br>S.L. ("Chemo")<br>(Spain)<br>Amylin Ohio LLC<br>(USA) | Grand River<br>Aseptic<br>Manufacturing Inc.<br>(USA)<br>Catalent Anagni<br>S.R.L.<br>(Italy) |   |   |   |
|----------------------|----------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---|---|---|
| Diluent<br>suppliers | Pfizer Perth,<br>Australia<br>Fresenius Kabi,<br>USA                                                           | - | -                                                                         | -                                                                                             | - | - | - |



A Foundation of Swiss Universities



## References

- 1. European Medicines Agency. Comirnaty and Spikevax: EMA recommendations on extra doses and boosters. European Medicines Agency. <u>https://www.ema.europa.eu/en/news/comirnaty-spikevax-ema-recommendations-extra-doses-boosters</u>. Published 2021. Updated 4 October. Accessed 5 October, 2021.
- 2. Hall VJ, Foulkes S, Saei A, et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). *SSRN - Preprint.* 2021. <u>https://doi.org/10.2139/ssrn.3790399</u>
- 3. Pilishvili T, Gierke R, Fleming-Dutra KE, et al. Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. *N Engl J Med.* 2021. https://doi.org/10.1056/NEJMoa2106599
- 4. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. *New England Journal of Medicine.* 2021. https://doi.org/10.1056/NEJMoa2114114
- Public Health England. Public Health England vaccine effectiveness report. 2021. <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment\_data/file/989360/PHE\_COVID-</u>
   19 vaccine effectiveness report March 2021 v2.pdf.
- 6. Thomson EC, Rosen LE, Shepherd JG, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. *Cell.* 2021;184(5):1171-1187.e1120. https://doi.org/10.1016/j.cell.2021.01.037
- 7. Chung H, He S, Nasreen S, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. *BMJ*. 2021;374:n1943. https://doi.org/10.1136/bmj.n1943
- 8. Lumley SF, Rodger G, Constantinides B, et al. An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. *Clinical infectious diseases.* 2021. https://doi.org/10.1093/cid/ciab608
- Corchado-Garcia J, Puyraimond-Zemmour D, Hughes T, et al. Real-World Effectiveness of Ad26.COV2.S Adenoviral Vector Vaccine for COVID-19. SSRN -Preprint. 2021. <u>https://doi.org/10.2139/ssrn.3835737</u>
- 10. Polinski JM, Weckstein AR, Batech M, et al. Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine. *medRxiv.* 2021:2021.2009.2010.21263385. https://doi.org/10.1101/2021.09.10.21263385
- Johnson & Johnson. Johnson & Johnson Announces Real-World Evidence and Phase 3 Data Confirming Strong and Long-Lasting Protection of Single-Shot COVID-19 Vaccine in the U.S. Johnson & Johnson. <u>https://www.jnj.com/johnson-johnsonannounces-real-world-evidence-and-phase-3-data-confirming-strong-and-longlasting-protection-of-single-shot-covid-19-vaccine-in-the-u-s. Published 2021. Updated 21 September. Accessed 21 September, 2021.
  </u>
- 12. Self WH, Tenforde MW, Rhoads JP, IVY Network. Vaccines in Preventing COVID-19 Hospitalizations Among Adults Without Immunocompromising Conditions. *Morbidity & Mortality Weekly Report.* 2021. <u>https://doi.org/10.15585/mmwr.mm7038e1external</u>







- Braeye T, Cornelissen L, Catteau L, et al. Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of Belgian contact tracing data, January-June 2021. Vaccine. 2021;39(39):5456-5460. https://doi.org/https://doi.org/10.1016/j.vaccine.2021.08.060
- 14. Jahromi M, Al Sheikh MH. Partial protection of Sinopharm vaccine against SARS COV2 during recent outbreak in Bahrain. *Microb Pathog.* 2021;158:105086. https://doi.org/10.1016/j.micpath.2021.105086
- 15. Jara A, Undurraga EA, González C, et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2107715
- 16. Cerqueira-Silva T, Oliveira VdA, Pescarini J, et al. Influence of age on the effectiveness and duration of protection in Vaxzevria and CoronaVac vaccines. *medRxiv*. 2021:2021.2008.2021.21261501. https://doi.org/10.1101/2021.08.21.21261501
- 17. A Study Looking at the Effectiveness and Safety of a COVID-19 Vaccine in South African Adults. In. ClinicalTrials.gov2021. https://clinicaltrials.gov/ct2/show/NCT04533399?term=Novavax&cond=Covid19&draw=2.
- 18. A Study Looking at the Effectiveness, Immune Response, and Safety of a COVID-19 Vaccine in Adults in the United Kingdom. In. ClinicalTrials.gov2021. <u>https://clinicaltrials.gov/ct2/show/NCT04583995?term=Novavax&cond=Covid19&dra</u> <u>w=2&rank=2</u>.
- 19. Paris C, Perrin S, Hamonic S, et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. *Clinical Microbiology and Infection*. 2021. https://doi.org/10.1016/j.cmi.2021.06.043
- 20. Katz MA, Bron Harlev E, Chazan B, et al. Covid-19 Vaccine Effectiveness in Healthcare Personnel in six Israeli Hospitals (CoVEHPI). *medRxiv*. 2021:2021.2008.2030.21262465. https://doi.org/10.1101/2021.08.30.21262465
- 21. Puranik A, Lenehan PJ, Silvert E, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. *medRxiv*. 2021:2021.2008.2006.21261707. https://doi.org/10.1101/2021.08.06.21261707
- 22. Knobel P, Serra C, Grau S, et al. Coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness in asymptomatic healthcare workers. *Infection Control & Hospital Epidemiology*. 2021:1-2. <u>https://doi.org/10.1017/ice.2021.287</u>
- 23. Tande AJ, Pollock BD, Shah ND, Binnicker M, Berbari EF. mRNA Vaccine Effectiveness Against Asymptomatic SARS-CoV-2 Infection Over a Seven-Month Period. *Infect Control Hosp Epidemiol.* 2021:1-7. https://doi.org/10.1017/ice.2021.399
- 24. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. *New England Journal of Medicine*. 2021;385(7):585-594. <u>https://doi.org/10.1056/NEJMoa2108891</u>
- 25. Nasreen S, Chung H, He S, et al. Effectiveness of COVID-19 vaccines against variants of concern in Ontario, Canada. *medRxiv.* 2021:2021.2006.2028.21259420. https://doi.org/10.1101/2021.06.28.21259420
- 26. Seppälä E, Veneti L, Starrfelt J, et al. Vaccine effectiveness against infection with the delta (b.1.617.2) variant, norway, april to august 2021. *Eurosurveillance*. 2021;26(35). https://doi.org/10.2807/1560-7917.ES.2021.26.35.2100793





- 27. Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. *The Lancet.* 2021;397(10293):2461-2462. https://doi.org/10.1016/S0140-6736(21)01358-1
- 28. Pouwels KB, Pritchard E, Matthews P, et al. Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. *medRxiv*. 2021:2021.2008.2018.21262237. <u>https://doi.org/10.1101/2021.08.18.21262237</u>
- 29. Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. *Nature Medicine*. 2021. <u>https://doi.org/10.1038/s41591-021-01446-y</u>
- 30. Bruxvoort K, Sy LS, Qian L, et al. Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. *medRxiv*. 2021:2021.2009.2029.21264199. https://doi.org/10.1101/2021.09.29.21264199
- 31. Chen Y, Shen H, Huang R, Tong X, Wu C. Serum neutralising activity against SARS-CoV-2 variants elicited by CoronaVac. *The Lancet Infectious Diseases*. 2021;21(8):1071-1072. https://doi.org/10.1016/S1473-3099(21)00287-5
- 32. Gidari A, Sabbatini S, Bastianelli S, et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. *Journal of Infection.* 2021. https://doi.org/10.1016/j.jinf.2021.07.019
- 33. Ranzani O, Hitchings M, Neto M, et al. Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study. *medRxiv preprint.* 2021. https://doi.org/10.1101/2021.05.19.21257472
- 34. World Health Organization. The Sinovac-CoronaVac COVID-19 vaccine: What you need to know. World Health Organization. <u>https://www.who.int/news-room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw4eaJBhDMARIsANhrQADBYtFm2zMvzbfjthveE2gmCJTRI\_jPc 4HPIIFSwdZpzTix45gmEM0aAml9EALw\_wcB. Published 2021. Updated 2 September 2021. Accessed 8 September, 2021.</u>
- 35. State of Israel Ministry of Health. Vaccine efficacy among those first vaccinated. <u>https://www.gov.il/BlobFolder/reports/vaccine-efficacy-safety-follow-up-</u> <u>committee/he/files publications corona two-dose-vaccination-data.pdf</u> Published 2021. Accessed 25 August, 2021.
- 36. Andrews N, Tessier E, Stowe J, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK Public Health England - Preprint. 2021. <u>https://khub.net/documents/135939561/338928724/Vaccine+effectiveness+and+durat</u> <u>ion+of+protection+of+covid+vaccines+against+mild+and+severe+COVID-19-19+in+the+UK.pdf/10dcd99c-0441-0403-dfd8-11ba2c6f5801</u>.
- 37. Nanduri S, Pilishvili T, Derado G, Schrag SJ. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant - National Healthcare Safety Network, March 1–August 1. *Morbidity & Mortality Weekly Report.* 2021;70(34):163-1166. https://doi.org/10.15585/mmwr.mm7034e3
- Tartof SY, Slezak JM, Fischer H, et al. Six-Month Effectiveness of BNT162B2 mRNA COVID-19 Vaccine in a Large US Integrated Health System: A Retrospective Cohort Study. SSRN - Preprint. 2021. <u>https://doi.org/10.2139/ssrn.3909743</u>





- 39. Mayo Foundation for Medical Education and Research (MFMER). Do COVID-19 vaccines protect against the variants? Mayo Clinic. Published 2021. Updated 24 August 2021. Accessed 8 September, 2021.
- 40. MIcochova P, Kemp SA, Shanker Dhar M, et al. SARS-CoV-2 B.1.617.2 Delta variant replication, sensitivity to neutralising antibodies and vaccine breakthrough. *bioRxiv*. 2021:2021.2005.2008.443253. <u>https://doi.org/10.1101/2021.05.08.443253</u>
- 41. Li X-n, Huang Y, Wang W, et al. Efficacy of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. *Emerging Microbes & Infections*. 2021:1-32. https://doi.org/10.1080/22221751.2021.1969291
- 42. Stowe J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against hospital admission with the delta (B.1.617.2) variant *Public Health Enland Publishing Preprint.* 2021. <u>https://khub.net/web/phe-national/public-library/-</u>/document\_library/v2WsRK3ZIEig/view\_file/479607329?\_com\_liferay\_document\_library\_web\_portlet\_DLPortlet\_INSTANCE\_v2WsRK3ZIEig\_redirect=https%3A%2F%2F khub.net%3A443%2Fweb%2Fphe-national%2Fpublic-library%2F-%2Fdocument\_library%2Fv2WsRK3ZIEig%2Fview%2F479607266.
- 43. Foley KE. J&J shot effective against Delta variant in large South Africa study. Politico. https://www.politico.eu/article/johnson-johnson-coronavirus-vaccine-delta-variant/. Published 2021. Updated 6 August 2021. Accessed 7 September, 2021.
- 44. de Gier B, Andeweg S, Joosten R, et al. Vaccine effectiveness against SARS-CoV-2 transmission and infections among household and other close contacts of confirmed cases, the Netherlands, February to May 2021. *Eurosurveillance*. 2021;26(31). https://doi.org/10.2807/1560-7917.ES.2021.26.31.2100640
- 45. Tenforde MW, Self WH, Naioti EA, et al. Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults — United States, March–July 2021. *Morbidity & Mortality Weekly Report.* 2021;70(34):1156-1162. <u>https://doi.org/10.15585/mmwr.mm7034e2</u>
- 46. Johnson & Johnson. Positive New Data for Johnson & Johnson Single-Shot COVID-19 Vaccine on Activity Against Delta Variant and Long-lasting Durability of Response. Johnson & Johnson. <u>https://www.jnj.com/positive-new-data-for-johnson-johnsonsingle-shot-covid-19-vaccine-on-activity-against-delta-variant-and-long-lastingdurability-of-response</u>. Published 2021. Updated 1 July 2021. Accessed 8 September, 2021.
- 47. Hu Z, Tao B, Li Z, et al. Effectiveness of inactive COVID-19 vaccines against severe illness in B.1.617.2 (Delta) variant-infected patients in Jiangsu, China. *medRxiv*. 2021:2021.2009.2002.21263010. <u>https://doi.org/10.1101/2021.09.02.21263010</u>
- 48. Oliver SE, Gargano JW, Marin M, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine -United States, December 2020. *MMWR Morbidity and mortality weekly report.* 2020;69(50):1922-1924. <u>https://doi.org/10.15585/mmwr.mm6950e2</u>
- 49. Caminati M, Guarnieri G, Batani V, et al. Covid-19 vaccination in patients with severe asthma on biologic treatment: Safety, tolerability, and impact on disease control. *Vaccines.* 2021;9(8). <u>https://doi.org/10.3390/vaccines9080853</u>
- 50. Haroun F, Alharbi M, Hong A. Case series on the safety of mRNA COVID19 vaccines in cancer patients undergoing treatment. *Journal of Clinical Oncology*. 2021;39(15 SUPPL). <u>https://doi.org/10.1200/JCO.2021.39.15\_suppl.e14562</u>





- 51. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *New England Journal of Medicine.* 2020;384(5):403-416. <u>https://doi.org/10.1056/NEJMoa2035389</u>
- 52. Wei N, Fishman M, Wattenberg D, Gordon M, Lebwohl M. "COVID arm": A reaction to the Moderna vaccine. *JAAD case reports.* 2021;10:92-95. https://doi.org/10.1016/j.jdcr.2021.02.014
- 53. Voysey M, Costa Clemens SA, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *The Lancet.* 2021;397(10269):99-111. <u>https://doi.org/10.1016/S0140-6736(20)32661-1</u>
- 54. Ghiasi N, Valizadeh R, Arabsorkhi M, et al. Efficacy and side effects of Sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19; a review and discussion. 2021. <u>https://doi.org/http://immunopathol.com/PDF/ipp-7-e31.pdf</u>
- 55. Shay DK, Gee J, Su JR, et al. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine - United States, March–April 2021. *Morbidity and Mortality Weekly Report.* 2021;70(18):680–684. https://doi.org/http://dx.doi.org/10.15585/mmwr.mm7018e2external
- 56. Saeed BQ, Al-Shahrabi R, Alhaj SS, Alkokhardi ZM, Adrees AO. Side Effects and Perceptions Following Sinopharm COVID-19 Vaccination. *Int J Infect Dis.* 2021. https://doi.org/10.1016/j.ijid.2021.08.013
- 57. Palacios R, Batista AP, Santos Nascimento Albuquerque C, et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN Preprint. 2021. https://doi.org/http://dx.doi.org/10.2139/ssrn.3822780
- 58. Durmaz K, Temiz SA, Zuhal K, Dursun R, Abdelmaksoud A. Allergic and Cutaneous reactions following Inactivated SARS-CoV-2 vaccine (CoronaVac®) in Healthcare workers. *Clin Exp Dermatol.* 2021. <u>https://doi.org/10.1111/ced.14896</u>
- 59. Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2107659
- 60. Kim HW, Jenista ER, Wendell DC, et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. *JAMA Cardiology*. 2021. https://doi.org/10.1001/jamacardio.2021.2828
- 61. Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. *Circulation.* 2021;144(6):471-484. https://doi.org/doi:10.1161/CIRCULATIONAHA.121.056135
- Kafil T, Lamacie MM, Chenier S, et al. mRNA COVID-19 Vaccination and Development of CMR-confirmed Myopericarditis. *medRxiv*. 2021:2021.2009.2013.21262182. https://doi.org/10.1101/2021.09.13.21262182
- 63. Cirillo N. Reported orofacial adverse effects of COVID-19 vaccines: The knowns and the unknowns. *Journal of Oral Pathology & Medicine*. 2021;50(4):424-427. https://doi.org/10.1111/jop.13165
- 64. Shimabukuro T. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine United States, December 14-23, 2020. *American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.* 2021;21(3):1332-1337. <a href="https://doi.org/10.1111/ajt.16516">https://doi.org/10.1111/ajt.16516</a>





- 65. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine.* 2020;383(27):2603-2615. https://doi.org/10.1056/NEJMoa2034577
- 66. Cohen OG, Clark AK, Milbar H, Tarlow M. Pityriasis rosea after administration of Pfizer-BioNTech COVID-19 vaccine. *Hum Vaccin Immunother.* 2021:1-2. https://doi.org/10.1080/21645515.2021.1963173
- 67. Temiz SA, Abdelmaksoud A, Dursun R, Durmaz K, Sadoughifar R, Hasan A. Pityriasis rosea following SARS-CoV-2 vaccination: A case series. *Journal of Cosmetic Dermatology*. 2021. <u>https://doi.org/10.1111/jocd.14372</u>
- 68. Vassallo C, Boveri E, Brazzelli V, et al. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine. *Dermatol Ther.* 2021:e15076. https://doi.org/10.1111/dth.15076
- 69. Santovito LS, Pinna G. A case of reactivation of varicella-zoster virus after BNT162b2 vaccine second dose? *Inflamm Res.* 2021:1-3. <u>https://doi.org/10.1007/s00011-021-01491-w</u>
- 70. Fathy RA, McMahon DE, Lee C, et al. Varicella Zoster and Herpes Simplex Virus Reactivation Post-COVID-19 Vaccination: A Review of 40 Cases in an International Dermatology Registry. *J Eur Acad Dermatol Venereol.* 2021. https://doi.org/10.1111/idv.17646
- 71. Papasavvas I, de Courten C, Herbort CP, Jr. Varicella-zoster virus reactivation causing herpes zoster ophthalmicus (HZO) after SARS-CoV-2 vaccination report of three cases. *J Ophthalmic Inflamm Infect.* 2021;11(1):28. https://doi.org/10.1186/s12348-021-00260-4
- 72. Soub HA, Ibrahim W, Maslamani MA, A. Ali G, Ummer W, Abu-Dayeh A. Kikuchi-Fujimoto disease following SARS CoV2 vaccination: Case report. *IDCases.* 2021;25. https://doi.org/10.1016/j.idcr.2021.e01253
- 73. Chamarti K, Dar K, Reddy A, Gundlapalli A, Mourning D, Bajaj K. Thrombotic Thrombocytopenic Purpura Presentation in an Elderly Gentleman Following COVID Vaccine Circumstances. *Cureus*. 2021;13(7):e16619. https://doi.org/10.7759/cureus.16619
- 74. Collins EC, Carr MJ, Kim JS, et al. Immune thrombocytopenia in 2 healthy young women after the Pfizer-BioNTech BNT16B2b2 messenger RNA coronavirus disease 2019 vaccination. *J Am Coll Emerg Physicians Open.* 2021;2(5):e12531. https://doi.org/10.1002/emp2.12531
- 75. Horino T. IgA nephropathy flare-up following SARS-CoV-2 vaccination. QJM: monthly journal of the Association of Physicians. 2021. https://doi.org/10.1093/gjmed/hcab223
- 76. Hughes DL, Brunn JA, Jacobs J, Todd PK, Askari FK, Fontana RJ. Guillain-Barré syndrome after COVID-19 mRNA vaccination in a liver transplant recipient with favorable treatment response. *Liver Transpl.* 2021. <u>https://doi.org/10.1002/lt.26279</u>
- 77. Osowicki J, Morgan H, Harris A, Crawford NW, Buttery JP, Kiers L. Guillain-Barré Syndrome in an Australian state using both mRNA and adenovirus-vector SARS-CoV-2 vaccines. *Ann Neurol.* 2021. <u>https://doi.org/10.1002/ana.26218</u>
- 78. Perna D, Jones J, Schadt CR. Acute generalized pustular psoriasis exacerbated by the COVID-19 vaccine. JAAD Case Rep. 2021. https://doi.org/10.1016/j.jdcr.2021.08.035
- 79. Iwata H, Kamiya K, Kado S, et al. Case of immunoglobulin A vasculitis following coronavirus disease 2019 vaccination. *J Dermatol.* 2021. https://doi.org/10.1111/1346-8138.16167





- Mücke VT, Knop V, Mücke MM, Ochsendorf F, Zeuzem S. First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: a case report. BMC Infect Dis. 2021;21(1):958. https://doi.org/10.1186/s12879-021-06655-x
- 81. Elias C, Cardoso P, Gonçalves D, Vaz I, Cardoso L. Rhabdomyolysis Following Administration of Comirnaty(®). *Eur J Case Rep Intern Med.* 2021;8(8):002796. https://doi.org/10.12890/2021\_002796
- 82. Franquemont S, Galvez J. Subacute Thyroiditis After mRNA Vaccine for Covid-19. *Journal of the Endocrine Society.* 2021;5(Suppl 1):A956-A957. <u>https://doi.org/10.1210/jendso/bvab048.1954</u>
- 83. Sato K, Mano T, Niimi Y, Toda T, Iwata A, Iwatsubo T. Facial nerve palsy following the administration of COVID-19 mRNA vaccines: analysis of a self-reporting database. Int J Infect Dis. 2021;111:310-312. https://doi.org/10.1016/j.ijid.2021.08.071
- 84. Buján Bonino C, Moreiras Arias N, López-Pardo Rico M, et al. Atypical erythema multiforme related to BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. *Int J Dermatol.* 2021. https://doi.org/10.1111/ijd.15894
- 85. Yoshifuji A, Ishioka K, Masuzawa Y, et al. COVID-19 vaccine induced interstitial lung disease. *J Infect Chemother.* 2021. <u>https://doi.org/10.1016/j.jiac.2021.09.010</u>
- 86. Valenzuela DA, Groth S, Taubenslag KJ, Gangaputra S. Acute macular neuroretinopathy following Pfizer-BioNTech COVID-19 vaccination. *Am J Ophthalmol Case Rep.* 2021;24:101200. <u>https://doi.org/10.1016/j.ajoc.2021.101200</u>
- 87. Coffman JR, Randolph AC, Somerson JS. Parsonage-Turner Syndrome After SARS-CoV-2 BNT162b2 Vaccine: A Case Report. *JBJS Case Connect.* 2021;11(3). <u>https://doi.org/10.2106/jbjs.Cc.21.00370</u>
- 88. Rubinstein TJ. Thyroid Eye Disease Following COVID-19 Vaccine in a Patient With a History Graves' Disease: A Case Report. *Ophthalmic Plast Reconstr Surg.* 2021. https://doi.org/10.1097/iop.0000000002059
- 89. Yamamoto K, Mashiba T, Takano K, et al. A case of exacerbation of subclinical hyperthyroidism after first administration of bnt162b2 mrna covid-19 vaccine. *Vaccines.* 2021;9(10). <u>https://doi.org/10.3390/vaccines9101108</u>
- 90. Nassar M, Chung H, Dhayaparan Y, et al. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. *Diabetes & metabolic syndrome*. 2021;15(4):102170-102170. <u>https://doi.org/10.1016/j.dsx.2021.06.007</u>
- 91. Iftikhar H, Noor SMU, Masood M, Bashir K. Bell's Palsy After 24 Hours of mRNA-1273 SARS-CoV-2 Vaccine. *Cureus*. 2021;13(6):e15935-e15935. <u>https://doi.org/10.7759/cureus.15935</u>
- 92. Thimmanagari K, Veeraballi S, Roach D, Al Omour B, Slim J. Ipsilateral Zoster Ophthalmicus Post COVID-19 Vaccine in Healthy Young Adults. *Cureus*. 2021;13(7):e16725. https://doi.org/10.7759/cureus.16725
- 93. Drerup KA, Gläser R. SARS-CoV-2—update on skin manifestations, predictive markers and cutaneous reactions after vaccination. *Hautarzt.* 2021. https://doi.org/10.1007/s00105-021-04881-7
- 94. Khan E, Shrestha AK, Colantonio MA, Liberio RN, Sriwastava S. Acute transverse myelitis following SARS-CoV-2 vaccination: a case report and review of literature. *Journal of Neurology*. 2021. <u>https://doi.org/10.1007/s00415-021-10785-2</u>
- 95. Christensen SK, Ballegaard M, Boesen MS. Guillian Barré syndromeafter mRNA-1273 vaccination against COVID-19. *Ugeskr Laeger.* 2021;183(35). Published 2021/09/04.





- 96. Matarneh AS, Al-Battah AH, Farooqui K, Ghamoodi M, Alhatou M. COVID-19 vaccine causing Guillain-Barre syndrome, a rare potential side effect. *Clin Case Rep.* 2021;9(9):e04756. <u>https://doi.org/10.1002/ccr3.4756</u>
- 97. Agaronov A, Makdesi C, Hall CS. Acute generalized exanthematous pustulosis induced by Moderna COVID-19 messenger RNA vaccine. *JAAD Case Rep.* 2021;16:96-97. https://doi.org/10.1016/j.jdcr.2021.08.013
- 98. Ajmera KM. Fatal case of rhabdomyolysis post-covid-19 vaccine. *Infection and Drug Resistance*. 2021;14:3929-3935. <u>https://doi.org/10.2147/IDR.S331362</u>
- 99. Mack M, Nichols L, Guerrero DM. Rhabdomyolysis Secondary to COVID-19 Vaccination. *Cureus*. 2021;13(5):e15004. <u>https://doi.org/10.7759/cureus.15004</u>
- 100. Català A, Muñoz-Santos C, Galván-Casas C, et al. Cutaneous reactions after SARS-COV-2 vaccination: A cross-sectional Spanish nationwide study of 405 cases. *The British journal of dermatology.* 2021. <u>https://doi.org/10.1111/bjd.20639</u>
- 101. Guzmán-Pérez L, Puerta-Peña M, Falkenhain-López D, et al. Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2. *Journal of the European Academy of Dermatology and Venereology*. 2021. https://doi.org/10.1111/jdv.17547
- 102. Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and Intracranial Venous Sinus Thrombosis after "COVID-19 Vaccine AstraZeneca" Exposure. *Journal of Clinical Medicine*. 2021;10(8):1599. <u>https://www.mdpi.com/2077-0383/10/8/1599</u>.
- Schulz JB, Berlit P, Diener HC, et al. COVID-19 vaccine-associated cerebral venous thrombosis in Germany. *Annals of neurology*. 2021. <u>https://doi.org/10.1002/ana.26172</u>
- 104. Perera R, Fletcher J. Thromboembolism and the Oxford-AstraZeneca vaccine. *BMJ.* 2021;373:n1159. <u>https://doi.org/10.1136/bmj.n1159</u>
- 105. Althaus K, Möller P, Uzun G, et al. Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic thrombocytopenia. *Haematologica*. 2021;106(8):2170-2179. <u>https://doi.org/10.3324/haematol.2021.279000</u>
- 106. Al Rawahi B, BaTaher H, Jaffer Z, Al-Balushi A, Al-Mazrouqi A, Al-Balushi N. Vaccine-induced immune thrombotic thrombocytopenia following AstraZeneca (ChAdOx1 nCOV19) vaccine-A case report. *Res Pract Thromb Haemost.* 2021;5(6):e12578. <u>https://doi.org/10.1002/rth2.12578</u>
- 107. Asmat H, Fayeye F, Alshakaty H, Patel J. A rare case of COVID-19 vaccine-induced thrombotic thrombocytopaenia (VITT) involving the veno-splanchnic and pulmonary arterial circulation, from a UK district general hospital. *BMJ Case Rep.* 2021;14(9). https://doi.org/10.1136/bcr-2021-244223
- 108. Alalwan AA, Abou Trabeh A, Premchandran D, Razeem M. COVID-19 Vaccine-Induced Thrombotic Thrombocytopenia: A Case Series. *Cureus*. 2021;13(9):e17862. https://doi.org/10.7759/cureus.17862
- 109. Wolthers SA, Stenberg J, Nielsen HB, Stensballe J, Pedersen HP. Intracerebral haemorrhage twelve days after vaccination with ChAdOx1 nCoV-19. *Ugeskr Laeger*. 2021;183(35). Published 2021/09/04.
- 110. Kar BR, Singh BS, Mohapatra L, Agrawal I. Cutaneous small-vessel vasculitis following COVID-19 vaccine. *J Cosmet Dermatol.* 2021. https://doi.org/10.1111/jocd.14452





- 111. Fang WC, Chiu LW, Hu SC. Psoriasis exacerbation after first dose of AstraZeneca coronavirus disease 2019 vaccine. *J Dermatol.* 2021. <u>https://doi.org/10.1111/1346-8138.16137</u>
- 112. Corrêa DG, Cañete LAQ, dos Santos GAC, de Oliveira RV, Brandão CO, da Cruz LCH. Neurological symptoms and neuroimaging alterations related with COVID-19 vaccine: Cause or coincidence? *Clinical Imaging.* 2021;80:348-352. https://doi.org/10.1016/j.clinimag.2021.08.021
- 113. Oh HK, Kim EK, Hwang I, et al. COVID-19 vaccine safety monitoring in the Republic of Korea: February 26, 2021 to April 30, 2021. Osong Public Health Res Perspect. 2021;12(4):264-268. https://doi.org/10.24171/j.phrp.2021.0157
- 114. Mohta A, Arora A, Srinivasa R, Mehta RD. Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria being treated with cyclosporine—A report of 3 cases. *Journal of Cosmetic Dermatology*. 2021. https://doi.org/10.1111/jocd.14437
- 115. Wantavornprasert K, Noppakun N, Klaewsongkram J, Rerknimitr P. Generalized Bullous Fixed Drug Eruption after ChAdOx1 nCoV-19 Vaccination. *Clin Exp Dermatol.* 2021. https://doi.org/10.1111/ced.14926
- 116. Oo WM, Giri P, de Souza A. AstraZeneca COVID-19 vaccine and Guillain- Barré Syndrome in Tasmania: A causal link? *J Neuroimmunol.* 2021;360:577719. https://doi.org/10.1016/j.jneuroim.2021.577719
- 117. Pedrazini MC, da Silva MH. "Pityriasis Rosea-like cutaneous eruption as a possible dermatological manifestation after Oxford-AstraZeneca vaccine: case report and brief literature review.". *Dermatol Ther.* 2021:e15129. <u>https://doi.org/10.1111/dth.15129</u>
- Leerunyakul K, Pakornphadungsit K, Suchonwanit P. Case Report: Pityriasis Rosea-Like Eruption Following COVID-19 Vaccination. *Front Med (Lausanne).* 2021;8:752443. <u>https://doi.org/10.3389/fmed.2021.752443</u>
- 119. Maguire D, McLaren DS, Rasool I, Shah PM, Lynch J, Murray RD. ChAdOx1 SARS-CoV-2 vaccination: A putative precipitant of adrenal crises. *Clinical Endocrinology*. 2021. <u>https://doi.org/10.1111/cen.14566</u>
- 120. Elbæk MV, Vinding GR, Jemec GBE. Darier's Disease Flare following COVID-19 Vaccine. Case Rep Dermatol. 2021;13(2):432-436. https://doi.org/10.1159/000517256
- 121. Wu RW, Lin TK. Oxford-AstraZeneca COVID-19 vaccine-induced acute localized exanthematous pustulosis. *J Dermatol.* 2021. <u>https://doi.org/10.1111/1346-8138.16138</u>
- 122. Sirufo MM, Raggiunti M, Magnanimi LM, Ginaldi L, De Martinis M. Henoch-schönlein purpura following the first dose of covid-19 viral vector vaccine: A case report. *Vaccines.* 2021;9(10). https://doi.org/10.3390/vaccines9101078
- 123. Tan A, Stepien KM, Narayana STK. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. *Qjm.* 2021. https://doi.org/10.1093/gjmed/hcab077
- 124. MacNeil JR, Su JR, Broder KR, et al. Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome Among Vaccine Recipients - United States, April 2021. MMWR Morbidity and mortality weekly report. 2021;70(17):651-656. https://doi.org/10.15585/mmwr.mm7017e4



A Foundation of Swiss Universities Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

- U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: July 13, 2021.
   U.S Food & Drug Administration. Published 2021. Updated 13 July 2021. Accessed 18 August, 2021.
- 126. Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. *JAMA*. 2021;326(1):35-45. <u>https://doi.org/10.1001/jama.2021.8565</u>
- 127. Huang L, Yao Z, Zhang J. Two cases of pityriasis rosea after the injection of coronavirus disease 2019 vaccine. *J Eur Acad Dermatol Venereol.* 2021. https://doi.org/10.1111/jdv.17648
- 128. Tutar NK, EyigÜRbÜZ T, Yildirim Z, Kale N. A variant of guillain-barre syndrome after sars-cov-2 vaccination: Amsan. *Ideggyogyaszati Szemle.* 2021;74(7-8):286-288. https://doi.org/10.18071/ISZ.74.0286
- 129. Saygılı ES, Karakilic E. Subacute thyroiditis after inactive SARS-CoV-2 vaccine. *BMJ Case Rep.* 2021;14(10). <u>https://doi.org/10.1136/bcr-2021-244711</u>
- 130. Shimazawa R, Ikeda M. Potential adverse events in Japanese women who received tozinameran (BNT162b2, Pfizer-BioNTech). *Journal of Pharmaceutical Policy and Practice*. 2021;14(1):46. <u>https://doi.org/10.1186/s40545-021-00326-7</u>
- 131. Saito K, Shimizu T, Suzuki-Inoue K, Ishida T, Wada Y. Aseptic meningitis after vaccination of the BNT162b2 mRNA COVID-19 vaccine. *Neurol Sci.* 2021:1-3. https://doi.org/10.1007/s10072-021-05543-1
- 132. Bril F, Fettig DM. Reply to: "Comment on "Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty?"". *Journal of Hepatology*. 2021. <u>https://doi.org/10.1016/j.jhep.2021.06.008</u>
- 133. Palla P, Vergadis C, Sakellariou S, Androutsakos T. Letter to the editor: Autoimmune hepatitis after COVID-19 vaccination. A rare adverse effect? *Hepatology.* 2021. https://doi.org/10.1002/hep.32156
- 134. Maniscalco GT, Manzo V, Di Battista ME, et al. Severe Multiple Sclerosis Relapse After COVID-19 Vaccination: A Case Report. *Front Neurol.* 2021;12:721502. https://doi.org/10.3389/fneur.2021.721502
- 135. Takenaka T, Matsuzaki M, Fujiwara S, Hayashida M, Suyama H, Kawamoto M. Myeloperoxidase Anti-neutrophil Cytoplasmic Antibody Positive Optic Perineuritis after mRNA Coronavirus Disease-19 Vaccine: A Case Report. *Qjm.* 2021. https://doi.org/10.1093/gjmed/hcab227
- Endo B, Bahamon S, Martínez-Pulgarín DF. Central retinal vein occlusion after mRNA SARS-CoV-2 vaccination: A case report. *Indian J Ophthalmol.* 2021;69(10):2865-2866. <u>https://doi.org/10.4103/ijo.IJO\_1477\_21</u>
- 137. Vinzamuri S, Pradeep TG, Kotian R. Bilateral paracentral acute middle maculopathy and acute macular neuroretinopathy following COVID-19 vaccination. *Indian J Ophthalmol.* 2021;69(10):2862-2864. <u>https://doi.org/10.4103/ijo.IJO\_1333\_21</u>
- Elboraey MO, Essa E. Stevens-Johnson syndrome post second dose of Pfizer COVID-19 vaccine: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(4):e139-e142. <u>https://doi.org/10.1016/j.oooo.2021.06.019</u>
- 139. Bakir M, Almeshal H, Alturki R, Obaid S, Almazroo A. Toxic Epidermal Necrolysis Post COVID-19 Vaccination - First Reported Case. *Cureus.* 2021;13(8):e17215. <u>https://doi.org/10.7759/cureus.17215</u>
- 140. Sung JG, Sobieszczyk PS, Bhatt DL. Acute Myocardial Infarction Within 24 Hours After COVID-19 Vaccination. *Am J Cardiol.* 2021;156:129-131. https://doi.org/10.1016/j.amjcard.2021.06.047





- 141. Gadi SRV, Brunker PAR, Al-Samkari H, et al. Severe autoimmune hemolytic anemia following receipt of SARS-CoV-2 mRNA vaccine. *Transfusion.* 2021. https://doi.org/10.1111/trf.16672
- 142. Murvelashvili N, Tessnow A. A Case of Hypophysitis Following Immunization With the mRNA-1273 SARS-CoV-2 Vaccine. *Journal of Investigative Medicine High Impact Case Reports*. 2021;9. <u>https://doi.org/10.1177/23247096211043386</u>
- 143. Abramson M, Mon-Wei Yu S, Campbell KN, Chung M, Salem F. IgA Nephropathy After SARS-CoV-2 Vaccination. *Kidney Medicine*. 2021. https://doi.org/10.1016/j.xkme.2021.05.002
- 144. Edwards AE, Vathenen R, Henson SM, Finer S, Gunganah K. Acute hyperglycaemic crisis after vaccination against COVID-19: A case series. *Diabet Med.* 2021:e14631. https://doi.org/10.1111/dme.14631
- 145. Essam R, Ehab R, Al-Razzaz R, Khater MW, Moustafa EA. Alopecia areata after ChAdOx1 nCoV-19 vaccine (Oxford/AstraZeneca): a potential triggering factor? J Cosmet Dermatol. 2021. https://doi.org/10.1111/jocd.14459
- 146. Jain E, Pandav K, Regmi P, Michel G, Altshuler I. Facial Diplegia: A Rare, Atypical Variant of Guillain-Barré Syndrome and Ad26.COV2.S Vaccine. *Cureus*. 2021;13(7):e16612. <u>https://doi.org/10.7759/cureus.16612</u>
- 147. Lane S, Shakir S. Reports of myocarditis and pericarditis following mRNA COVID-19 vaccines: A review of spontaneously reported data from the UK, Europe, and the US. *medRxiv.* 2021:2021.2009.2009.21263342. https://doi.org/10.1101/2021.09.09.21263342
- 148. Witberg G, Barda N, Hoss S, et al. Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2110737
- 149. Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2109730
- 150. Walsh EE, Frenck RW, Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. *New England Journal of Medicine*. 2020;383(25):2439-2450. <u>https://doi.org/10.1056/NEJMoa2027906</u>
- 151. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. *New England Journal of Medicine.* 2020.
- 152. Anderson EJ, Rouphael NG, Widge AT, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. *New England Journal of Medicine*. 2020;383(25):2427-2438. <u>https://doi.org/10.1056/NEJMoa2028436</u>
- 153. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. *The Lancet.* 2020;396(10267):1979-1993. <u>https://doi.org/10.1016/S0140-6736(20)32466-1</u>
- 154. Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1–2a trial of Ad26. COV2. S Covid-19 vaccine. *New England Journal of Medicine.* 2021;384(19):1824-1835.
- 155. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. *The Lancet Infectious Diseases*. 2021;21(1):39-51. <u>https://doi.org/10.1016/S1473-3099(20)30831-8</u>





- 156. Karamese M, Tutuncu EE. The effectiveness of inactivated SARS-CoV-2 vaccine (CoronaVac) on antibody response in participants aged 65 years and older. *Journal of Medical Virology.* 2021. https://doi.org/10.1002/jmv.27289
- 157. Formica N, Mallory R, Albert G, et al. Evaluation of a SARS-CoV-2 Vaccine NVX-CoV2373 in Younger and Older Adults. *medRxiv.* 2021:2021.2002.2026.21252482. https://doi.org/10.1101/2021.02.26.21252482
- 158. Prunas O, Warren JL, Crawford FW, et al. Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. *medRxiv*. 2021:2021.2007.2013.21260393. https://doi.org/10.1101/2021.07.13.21260393
- 159. Riemersma KK, Grogan BE, Kita-Yarbro A, et al. Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent - Wisconsin, July 2021. *medRxiv*. 2021:2021.2007.2031.21261387. https://doi.org/10.1101/2021.07.31.21261387
- 160. Harris RJ, Hall JA, Zaidi A, Andrews NJ, Dunbar JK, Dabrera G. Effect of vaccination on household transmission of sars-cov-2 in england. *New England Journal of Medicine.* 2021;385(8):759-760. <u>https://doi.org/10.1056/NEJMc2107717</u>
- 161. Shah ASV, Gribben C, Bishop J, et al. Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households. *medRxiv.* 2021:2021.2003.2011.21253275. https://doi.org/10.1101/2021.03.11.21253275
- 162. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. *Lancet.* 2021;397(10282):1351-1362. https://doi.org/10.1016/s0140-6736(21)00628-0
- 163. Israel A, Merzon E, Schäffer AA, et al. Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection in a large cohort. *medRxiv*. 2021:2021.2008.2003.21261496. https://doi.org/10.1101/2021.08.03.21261496
- 164. Salvagno GL, Henry B, Pighi L, De Nitto S, Lippi G. Total Anti-SARS-CoV-2 Antibodies Measured 6 Months After Pfizer-BioNTech COVID-19 Vaccination in Healthcare Workers. SSRN- Preprint. 2021. https://doi.org/10.2139/ssrn.3915349
- 165. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. *medRxiv.* 2021:2021.2008.2025.21262584. https://doi.org/10.1101/2021.08.25.21262584
- 166. Barin B, Kasap U, Selçuk F, Volkan E, Uluckan O. Longitudinal Comparison of SARS-CoV-2 Anti-Spike RBD IgG antibody Responses After CoronaVac, BNT162b2, ChAdOx1 nCoV-19 Vaccines and Evaluation of a Single Booster Dose of BNT162b2 or CoronaVac After a Primary CoronaVac Regimen. SSRN - Preprint. 2021. <u>https://ssrn.com/abstract=3929973</u>.
- Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. *New England Journal of Medicine*. 2021. <u>https://doi.org/10.1056/NEJMoa2114583</u>
- 168. Doria-Rose N, Suthar MS, Makowski M, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. *New England Journal of Medicine*. 2021;384(23):2259-2261. <u>https://doi.org/10.1056/NEJMc2103916</u>
- 169. Baden LR, ElSahly HM, Essink B, et al. Covid-19 in the Phase 3 Trial of mRNA-1273 During the Delta-variant Surge. *medRxiv*. 2021:2021.2009.2017.21263624. <u>https://doi.org/10.1101/2021.09.17.21263624</u>





- 170. Flaxman A, Marchevsky N, Jenkin D, et al. Tolerability and Immunogenicity After a Late Second Dose or a Third Dose of ChAdOx1 nCoV-19 (AZD1222). SSRN Preprint. 2021. <u>https://doi.org/10.2139/ssrn.3873839</u>
- 171. Sadoff J, Le Gars M, Cardenas V, et al. Durability of antibody responses elicited by a single dose of Ad26.COV2.S and substantial increase following late boosting. *medRxiv.* 2021:2021.2008.2025.21262569. https://doi.org/10.1101/2021.08.25.21262569
- 172. Barouch DH, Stephenson KE, Sadoff J, et al. Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. *New England Journal of Medicine*. 2021. <u>https://doi.org/http://doi.org/10.1056/NEJMc2108829</u>
- 173. Badano MN, Sabbione F, Keitelman I, et al. Humoral response to the BBIBP-CorV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. *medRxiv*. 2021:2021.2010.2002.21264432. https://doi.org/10.1101/2021.10.02.21264432
- 174. Li M, Yang J, Wang L, et al. A booster dose is immunogenic and will be needed for older adults who have completed two doses vaccination with CoronaVac: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. *medRxiv.* 2021:2021.2008.2003.21261544. https://doi.org/10.1101/2021.08.03.21261544
- 175. Wang K, Cao YR, Zhou Y, et al. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. *medRxiv*. 2021:2021.2009.2002.21261735. https://doi.org/10.1101/2021.09.02.21261735
- 176. Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. *New England Journal of Medicine.* 2021;385(3):239-250. <u>https://doi.org/10.1056/NEJMoa2107456</u>
- 177. Study to Evaluate the Safety, Tolerability, and Immunogenicity of an RNA Vaccine Candidate Against COVID-19 in Healthy Children <12 Years of Age. In: <u>https://ClinicalTrials.gov/show/NCT04816643</u>;
- 178. Ali K, Berman G, Zhou H, et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. *N Engl J Med.* 2021. https://doi.org/10.1056/NEJMoa2109522
- 179. A Study to Evaluate Safety and Effectiveness of mRNA-1273 COVID-19 Vaccine in Healthy Children Between 6 Months of Age and Less Than 12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04796896;
- 180. Ewen Callaway. COVID vaccines and kids: five questions as trials begin. <u>https://www.nature.com/articles/d41586-021-01061-4</u>. Published 2021. Accessed August 11, 2021, 2021.
- 181. Han B, Song Y, Li C, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a doubleblind, randomised, controlled, phase 1/2 clinical trial. *The Lancet Infectious Diseases*. 2021. <u>https://doi.org/10.1016/S1473-3099(21)00319-4</u>
- 182. Novavax Initiates Pediatric Expansion for Phase 3 Clinical Trial of COVID-19 Vaccine [press release]. May 3, 2021 2021. <u>https://ir.novavax.com/2021-05-03-Novavax-</u> Initiates-Pediatric-Expansion-for-Phase-3-Clinical-Trial-of-COVID-19-Vaccine.
- 183. Pfizer and BioNtech Announce Positive Topline Results from Pivotal Trial of COVID-19 Vaccine in Children 5 to 11 Years [press release]. September 20, 2021 2021. <u>https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontechannounce-positive-topline-results</u>.
- 184. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-



blind, controlled, phase 1/2 trial. *Lancet Infect Dis.* 2021. https://doi.org/10.1016/s1473-3099(21)00462-x

- 185. A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥ 18 Years With a Pediatric Expansion in Adolescents (12 to < 18 Years) at Risk for SARS-CoV-2. In. ClinicalTrials.gov2021. <u>https://clinicaltrials.gov/ct2/show/NCT04611802?id=NCT04917523+OR+NCT050034</u> <u>66+OR+NCT05003479+OR+NCT04998240+OR+NCT04611802&draw=2&rank=5&lo</u> <u>ad=cart</u>.
- 186. Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? *Children*. 2021;8(7). https://doi.org/10.3390/children8070607
- University of Oxford. Comparing COVID-19 Vaccine Schedule Combinations. <u>https://comcovstudy.org.uk/about-com-cov2</u>. Published 2021. Accessed September 2, 2021.
- 188. Liu X, Shaw RH, Stuart ASV, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. *Lancet.* 2021. <u>https://doi.org/10.1016/S0140-6736(21)01694-9</u>
- 189. Schmidt T, Klemis V, Schub D, et al. Immunogenicity and reactogenicity of a heterologous COVID-19 prime-boost vaccination compared with homologous vaccine regimens. *medRxiv*. 2021:2021.2006.2013.21258859. https://doi.org/10.1101/2021.06.13.21258859
- 190. Borobia AM, Carcas AJ, Pérez-Olmeda M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. *The Lancet.* 2021;398(10295):121-130. <u>https://doi.org/10.1016/S0140-6736(21)01420-3</u>
- 191. Yorsaeng R, Vichaiwattana P, Klinfueng S, et al. Immune response elicited from heterologous SARS-CoV-2 vaccination: Sinovac (CoronaVac) followed by AstraZeneca (Vaxzevria). *medRxiv*. 2021:2021.2009.2001.21262955. https://doi.org/10.1101/2021.09.01.21262955
- 192. Li J, Hou L, Guo X, et al. Heterologous prime-boost immunization with CoronaVac and Convidecia. *medRxiv.* 2021:2021.2009.2003.21263062. https://doi.org/10.1101/2021.09.03.21263062
- 193. Safety and Efficacy of COVID-19 Prime-boost Vaccine in Bahrain. In: https://ClinicalTrials.gov/show/NCT04993560;
- 194. Moderna Announces Positive Initial Booster Data Against SARS-CoV-2 Variants of Concern [press release]. Cambridge, Massachusetts, May 5 2021. <u>https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov</u>.
- 195. Flaxman A, Marchevsky NG, Jenkin D, et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). *Lancet.* 2021. https://doi.org/10.1016/s0140-6736(21)01699-8
- 196. Novavax Announces COVID-19 Vaccine Booster Data Demonstrating Four-Fold Increase in Neutralizing Antibody Levels Versus Peak Responses After Primary Vaccination [press release]. Novavax, August 5, 2021 2021. <u>https://ir.novavax.com/2021-08-05-Novavax-Announces-COVID-19-Vaccine-Booster-Data-Demonstrating-Four-Fold-Increase-in-Neutralizing-Antibody-Levels-Versus-Peak-Responses-After-Primary-Vaccination</u>.





- Iketani S, Liu L, Nair MS, et al. A third COVID-19 vaccine shot markedly boosts neutralizing antibody potency and breadth. *medRxiv*. 2021:2021.2008.2011.21261670. https://doi.org/10.1101/2021.08.11.21261670
- 198. PFIZER AND BIONTECH ANNOUNCE SUBMISSION OF INITIAL DATA TO U.S. FDA TO SUPPORT BOOSTER DOSE OF COVID-19 VACCINE [press release]. NEW YORK & MAINZ, Germany2021. <u>https://www.pfizer.com/news/press-release-detail/pfizer-and-biontech-announce-submission-initial-data-us-fda</u>.
- 199. Wu K, Choi A, Koch M, et al. Preliminary Analysis of Safety and Immunogenicity of a SARS-CoV-2 Variant Vaccine Booster. *medRxiv.* 2021:2021.2005.2005.21256716. https://doi.org/10.1101/2021.05.05.21256716
- 200. Yorsaeng R, Suntronwong N, Phowatthanasathian H, et al. Immunogenicity of a third dose viral-vectored COVID-19 vaccine after receiving two-dose inactivated vaccines in healthy adults. *medRxiv*. 2021:2021.2009.2016.21263692. https://doi.org/10.1101/2021.09.16.21263692
- 201. Keskin AU, Bolukcu S, Ciragil P, Topkaya AE. SARS-CoV-2 specific antibody responses after third CoronaVac or BNT162b2 vaccine following two-dose CoronaVac vaccine regimen. *J Med Virol.* 2021. https://doi.org/10.1002/jmv.27350
- 202. Bar-On YM, Goldberg Y, Mandel M, et al. Protection Across Age Groups of BNT162b2 Vaccine Booster against Covid-19. *medRxiv*.
   2021:2021.2010.2007.21264626. https://doi.org/10.1101/2021.10.07.21264626
- 203. Bar-On YM, Goldberg Y, Mandel M, et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2114255
- 204. Patalon T, Gazit S, Pitzer VE, Prunas O, Warren JL, Weinberger DM. Short Term Reduction in the Odds of Testing Positive for SARS-CoV-2; a Comparison Between Two Doses and Three doses of the BNT162b2 Vaccine. *medRxiv*. 2021:2021.2008.2029.21262792. https://doi.org/10.1101/2021.08.29.21262792
- 205. Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel — 33 U.S. Sites, January–March 2021. *MMWR Morbidity and mortality weekly report.* 2021;70(20):753–758. https://doi.org/http://dx.doi.org/10.15585/mmwr.mm7020e2external
- 206. Vasileiou E, Simpson CR, Shi T, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. *The Lancet.* 2021;397(10285):1646-1657. https://doi.org/10.1016/S0140-6736(21)00677-2
- 207. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. *The Lancet.* 2021;397(10277):881-891. <u>https://doi.org/10.1016/S0140-6736(21)00432-3</u>
- 208. Hitchings MDT, Ranzani OT, Scaramuzzini Torres MS, et al. Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: A test-negative case-control study. *medRxiv*. 2021:2021.2004.2007.21255081. <u>https://doi.org/10.1101/2021.04.07.21255081</u>
- 209. El Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. *New England Journal of Medicine*. 2021. https://doi.org/10.1056/NEJMoa2113017





- 210. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. *N Engl J Med.* 2021;384(23):2187-2201. https://doi.org/10.1056/NEJMoa2101544
- Vacharathit V, Aiewsakun P, Manopwisedjaroen S, et al. SARS-CoV-2 variants of concern exhibit reduced sensitivity to live-virus neutralization in sera from CoronaVac vaccinees and naturally infected COVID-19 patients. *medRxiv*. 2021;2021.2007.2010.21260232. https://doi.org/10.1101/2021.07.10.21260232
- 212. Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. *medRxiv*. 2021:2021.2010.2005.21264567. https://doi.org/10.1101/2021.10.05.21264567
- 213. Thompson MG, Burgess JL, Naleway AL, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers — Eight U.S. Locations, December 2020–March 2021. *MMWR Morbidity and mortality weekly report.* 2021;70(13):495-500. https://doi.org/10.15585/mmwr.mm7013e3external
- 214. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. *Nat Commun.* 2021;12(1):3991. <u>https://doi.org/10.1038/s41467-021-24285-4</u>
- 215. Moderna. Moderna COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa. 2021. https://investors.modernatx.com/node/10841/pdf.
- 216. Jeewandara C, Aberathna IS, Pushpakumara PD, et al. Antibody and T cell responses to Sinopharm/BBIBP-CorV in naïve and previously infected individuals in Sri Lanka. *medRxiv*. 2021:2021.2007.2015.21260621. https://doi.org/10.1101/2021.07.15.21260621
- 217. Fernández J, Bruneau N, Fasce R, et al. Neutralization of alpha, gamma, and D614G SARS-CoV-2 variants by CoronaVac vaccine-induced antibodies. *Journal of Medical Virology.* 2021. https://doi.org/10.1002/jmv.27310
- 218. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. *Nature Communications*. 2021;12(1). <u>https://doi.org/10.1038/s41467-021-24285-4</u>
- 219. Thomas SJ, Moreira ED, Kitchin N, et al. Six Month Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. *medRxiv.* 2021:2021.2007.2028.21261159. https://doi.org/10.1101/2021.07.28.21261159
- 220. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. *New England Journal of Medicine*. 2021;384(20):1885-1898. <u>https://doi.org/10.1056/NEJMoa2102214</u>
- 221. Jongeneelen M, Kaszas K, Veldman D, et al. Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. *bioRxiv*. 2021:2021.2007.2001.450707. <u>https://doi.org/10.1101/2021.07.01.450707</u>
- 222. Tada T, Zhou H, Samanovic MI, et al. Comparison of Neutralizing Antibody Titers Elicited by mRNA and Adenoviral Vector Vaccine against SARS-CoV-2 Variants. *bioRxiv*. 2021:2021.2007.2019.452771. https://doi.org/10.1101/2021.07.19.452771
- 223. Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. *New England Journal of Medicine*. 2021;384(20):1899-1909. https://doi.org/10.1056/NEJMoa2103055
- 224. Buntz B. AstraZeneca, Pfizer Moderna vaccines fare well against Beta, Gamma and Delta variants in study. Drug Discovery & Development.





https://www.drugdiscoverytrends.com/astrazeneca-pfizer-moderna-vaccines-farewell-against-beta-gamma-and-delta-variants-in-study/. Published 2021. Updated 23 July 2021. Accessed 9 September 2021.

- 225. Choi A, Koch M, Wu K, et al. Serum Neutralizing Activity of mRNA-1273 against SARS-CoV-2 Variants. *bioRxiv.* 2021:2021.2006.2028.449914. https://doi.org/10.1101/2021.06.28.449914
- 226. Clemens SAC, Folegatti PM, Emary KRW, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. *Nat Commun.* 2021;12(1):5861. <u>https://doi.org/10.1038/s41467-021-25982-w</u>
- 227. Wall EC, Wu M, Harvey R, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. *The Lancet.* 2021;397(10292):2331-2333. https://doi.org/10.1016/S0140-6736(21)01290-3
- 228. Chagla Z. The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose. *Annals of Internal Medicine.* 2021;174(2):JC15. <u>https://doi.org/10.7326/ACPJ202102160-015</u>

