

Literature screening report

COVID-19 vaccines in the WHO's Emergency Use Listing (EUL): report (3)

Report submission date:	30.08.2021
Responsible authors:	Sabina Rodriguez Velásquez* ^{A,B}
Authors contributed equally	Gabriela Guizzo Dri ^{ A,B}
Co-authors/	Muaamar Al Gobari* ^{B,C}
collaborators:	Sara Botero-Mesa ^{A,B}
	Olivia Keiser ^A
Affiliation:	^A Institute of Global Health, University of Geneva, Switzerland
	^B Association Actions en Santé Publique (ASP) & The GRAPH Network,
	^c Department of Occupational and Environmental Health, Center for
	Primary Care and Public Health (Unisanté), University of Lausanne,
	Epalinges-Lausanne, Switzerland.

Coordination contact: Jorgen Bauwens (SSPH+)

Abstract

This report focuses on the World Health Organization's (WHO) Emergency Use Listing (EUL) of authorized vaccines as of 27 August, 2021. Currently six vaccines are authorised for emergency use: BNT162b2/COMIRNATY (Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA), Vaxzevria/ChAdOx1 nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP-CorV (China), and Sinovac/CoronaVac (China). This report provides a condensed summary concerning vaccine efficacy, safety, protection against variants, and further important information for each vaccine, in the form of a synoptic table. The information and data in this synoptic table was extracted from phase III clinical trials and from observational studies. This report particularly focuses on vaccine effectiveness and vaccine efficacy and effectiveness against variants.

Content

Abstract	1
Content	2
Preamble	2
Background	3
Methodology	3
Results	3
References	23

Preamble

A large number of scientific publications become available on a daily basis, reflecting the rapid development of knowledge and progress of science on COVID-19 related issues. Leading authorities should base decisions or policies on this knowledge; hence they need to master the actual state of this knowledge. Due to the large number of publications shared daily, decision makers heavily depend on accurate summaries of these publications, in the different public health domains. Therefore, the authors of this report were mandated by the Swiss School of Public Health plus (SSPH+), upon request of the Federal Office of Public Health (FOPH), to inform the FOPH on recent findings from the literature.

Background

According to the current global data on vaccinations, only 39.7% of the world populations had received at least one dose of a marketed COVID-19 vaccine as of 30 August 2021¹. Currently, six vaccines [namely, Pfizer-BioNTech, USA), Spikevax/Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA), Vaxzevria/ChAdOx1 nCoV-19/AZD1222/Covishield (AstraZeneca/Oxford, UK, India), Janssen Covid-19 vaccine/Johnson & Johnson (Janssen, USA), Sinopharm/BBIBP- CorV (China), and Sinovac/CoronaVac (China)] were assessed and granted an authorization by WHO as of August 19, 2021. Articles regarding vaccine effectiveness, vaccine efficacy and effectiveness against variants of concern (VOC), viral transmission, vaccine duration of protection, and rare adverse events were prioritized during the literature search and are the latest additions to the table. Data from clinical trials and observational studies for the six EUL-accepted vaccines regarding these highlighted topics was summarized and can be found in the synoptic table below.

Methodology

We screened the data for the EUL-accepted vaccines as of 27 August, 2021 from PubMed, Embase, medRxiv, bioRxiv, Cochrane, and clinical trials databases such as ClinicalTrials and WHO Trial Registry. The methods used were reported previously and can be found in prior reports.

Results

As phase III COVID-19 vaccine trials confirmed vaccine efficacy and safety for all six WHO EUL authorized vaccines, and as the share of fully vaccinated people begin to slowly increase across countries, it is important to assess vaccine effectiveness in real-world conditions, especially in relation to evolving variants of concern (VOC). Estimates of vaccine effectiveness concerning Pfizer/ BioNTech BNT162b2 and Moderna's mRNA-1273 from January to May 2021 demonstrated to have 94.6% (95% CI, 61.0-99.2%) and 100% effectiveness against confirmed SARS-CoV-2 infection, respectively, among a cohort of ~8,000 healthcare workers two weeks after the second dose². Another interim study conducted from December 2020 to March 2021 confirmed that two doses of either mRNA vaccines

² Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. *Clinical Microbiology and Infection*. <u>https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(21)00379-7/fulltext</u>

¹ <u>https://ourworldindata.org/covid-vaccinations</u> (accessed on 30.08.2021).

were 90% (95% CI,68-97%) effective at preventing SARS-CoV-2 infection³, consistent with phase III trials^{4.5}. However, a prospective cohort study (15,000 participants) in the United Kingdom demonstrated BNT162b2 to be only 86% effective after two doses against both asymptomatic and symptomatic infection⁶. This observational study was conducted when the dominant variant of circulation was B.1.1.7 (alpha), and although the vaccine's neutralization capacity was not specifically tested against the B.1.1.7 variant, it could explain BNT162b2's reduced effectiveness in this cohort study compared to prior reported data. Regarding the non-Swiss authorized vaccines, effectiveness estimates for AstraZeneca's ChAdOX1 nCoV-19/ AZD1222/ Covishield [85%; 0.15 (0.08-0.26)] and Janssen's Johnson & Johnson COVID-19 vaccine [76.7%; 95% CI, 30.3-95.3]⁷ are also comparable to their efficacy estimates in phase III trials (see synoptic table below). In a mass-vaccination Chilean setting (approximately 10.2 million persons), Sinovac/ CoronaVac's effectiveness [65.9%; 65.2-66.6] proved higher than its efficacy estimates⁸. To our knowledge few studies have been published on Sinopharm's BBIBP-CorV real-world effectiveness. Further information on vaccine effectiveness for the six WHO authorized vaccines are summarised in the table below.

Most phase III clinical trials were conducted prior to the evolving VOC⁹, and vaccine efficacy and effectiveness against these variants have been unclear. Ongoing clinical trials and test-negative casecontrol studies have demonstrated reduced vaccine neutralization capacity against COVID-19 variants compared to wild type. Pfizer/ BioNTech's BNT162b2 vaccine had an effectiveness of 93.7% with the alpha variant and 88% with the delta variant¹⁰. The Centers for Disease Control and Prevention (CDC) reported a decline in mRNA vaccine effectiveness from 91% (95% CI, 81-96), during the months preceding the Delta predominance, to 66% (95% CI, 26-84) in August¹¹. Moderna mRNA-1273/ Spikevax titres were reduced 1.5-fold against B.1.1.7 and B.1.617.2 strains and demonstrated 2.4 to

⁷ Real-world effectiveness of Ad26.COV2.S Adenoviral Vector Vaccine for COVID-19. SSRN – Preprint. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3835737

¹¹ Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance — Eight U.S. Locations, December 2020–August 2021. Morbidity and Mortality Weekly Report. <u>https://www.cdc.gov/mmwr/volumes/70/wr/mm7034e4.htm#suggestedcitation</u>

A Foundation of Swiss Universities

³ Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers — Eight U.S. Locations, December 2020–March 202. Morbidity and Mortality Weekly Report. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022879/pdf/mm7013e3.pdf</u>

⁴ Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine. <u>https://www.nejm.org/doi/full/10.1056/nejmoa2034577</u>

⁵ Efficacy and safety of the mRNA-123 SARS-CoV-2 vaccine. *New England Journal of Medicine*. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787219/</u>

⁶ Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). SSRN – Preprint. <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3790399</u>

⁸ Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. *New England Journal of Medicine*. <u>https://www.nejm.org/doi/full/10.1056/NEJMoa2107715</u>

⁹ See previous report: COVID-19 vaccines in the WHO's Emergency Use Listing (EUL): report (2).

¹⁰ Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) Variant. New England Journal of Medicine. <u>https://www.nejm.org/doi/full/10.1056/NEJMoa2108891</u>

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

3.0-fold reduced binding to the P.1 and B.1.351 strains¹². While AstraZeneca's ChAdOx1-nCoV effectively neutralizes the B.1.1.7¹³ and P.1^{14,15} strains and has an effectiveness of 60% (95% CI, 53-66) against the delta variant¹⁶, the vaccine demonstrated a significantly reduced neutralization capacity against the B.1.351 strain¹⁷. The Ad26.COV2.S COVID-19 vaccine neutralizes the Delta variant at greater capacities than the B.1.351 and P.1 strains¹⁸. With the ever-changing situation, more clinical and observational studies are needed to confirm vaccine efficacy and effectiveness against VOCs.

Since the approval for emergency use and administration of COVID-19 vaccines, limited data on the duration of protection of the WHO EUL approved vaccines has become available. Studies on the persistence of antibodies, humoral and cellular immune response, and time-to-breakthrough-infection in vaccinated populations provide us with a general idea of the possible duration of protection against COVID-19. Overall, most studies analysing the persistence of antibodies, humoral, and cellular immune responses demonstrated that the mRNA vaccines (BNT162b2 & mRNA-1273), ChAdOx1, and Ad26.COV2.S had a duration of protection ranging from 6 to 8 months^{19 20 21}.

With the emergence of new variants of concern, few breakthrough infections have been reported in fully vaccinated individuals such as 39 SARS-CoV-2 breakthrough infections documented in Health Care Workers in Israel²². To better understand the role of vaccines in their prevention against transmission, virus loads, and shedding in breakthrough infections, various studies have tried to infer infectiousness

¹² Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science. <u>https://science.sciencemag.org/content/early/2021/08/11/science.abj4176?ga=2.235822593.145620917.1628696888-1399774036.1602427045</u>

¹³ Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. *The Lancet. <u>https://pubmed.ncbi.nlm.nih.gov/33798499/</u>*

¹⁴ AstraZeneca's COVID-19 vaccine shows effectiveness against Indian variants of SARS-CoV-2 virus. AstraZeneca. <u>https://www.astrazeneca.com/media-centre/articles/2021/astrazenecas-covid-19-vaccine-shows-effectiveness-against-indian-variants-of-sars-cov-2-virus.html</u>

¹⁵ Antibody evasion by the Brazilian P.1 strain of SARS-CoV-2. *bioRxiv*. <u>http://biorxiv.org/content/early/2021/03/15/2021.03.12.435194.abstract</u>

¹⁶ SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. *The Lancet.* <u>https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01358-1/fulltext</u>

¹⁷ Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine. <u>https://www.nejm.org/doi/full/10.1056/nejmoa2102214#:~:text=A%20pooled%20analysis%20of%20the,%5D%2C%2057.4</u> <u>%20to%2074.0</u>).

¹⁸ Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. bioRxiv. <u>https://www.biorxiv.org/content/10.1101/2021.07.01.450707v1</u>

¹⁹ mRNA Vaccination Induces Durable Immune Memory to SARS-CoV-2 with Continued Evolution to Variants of Concern. *bioRxiv.* <u>http://biorxiv.org/content/early/2021/08/23/2021.08.23.457229.abstract</u>

²⁰ Tolerability and Immunogenicity After a Late Second Dose or Third Dose of ChAdOx1 nCoV-19 (AZD1222). SSRN Preprint. <u>https://ssrn.com/abstract=3873839</u>

²¹ Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. *New England Journal of Medicine*. <u>https://www.nejm.org/doi/full/10.1056/NEJMc2108829</u>

²² Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. New England Journal of Medicine. <u>https://www.nejm.org/doi/full/10.1056/NEJMoa2109072</u>

A Foundation of Swiss Universities

using the SARS-CoV-2 PCR cycle threshold (Ct) value as an indicator. A Ct value lower than 25-30 has become an indicator of the presence of infectious SARS-CoV-2 and, therefore, allowed scientists to infer the infectiousness, transmissibility, and virus shedding in infected individuals²³. Before the prevalence of the Delta variant, studies demonstrated that infectivity and transmission was significantly reduced in cases vaccinated with BNT162b2 and ChAdOx1 as inoculated individuals were 40% to 78% less likely to spread the virus to other household members²⁴ ²⁵ ²⁶. Nevertheless, as the Delta variant became the predominant variant in many countries worldwide, studies comparing Ct values between vaccinated and unvaccinated individuals detected no significant difference in Ct values by vaccination status²⁷. However, two studies reported that although the Ct values were similar, the viral loads decreased faster²⁸, and lower probability of infectious virus detection were detected in vaccinated individuals²⁹. Overall, further studies are needed to better understand viral dynamics in breakthrough infections, especially in cases with the B.1.617.2 (Delta) variant.

Further (biweekly) updated data on the six WHO EUL vaccines are synthesized in the synoptic table.

²⁹ Virological characteristics of SARS-CoV-2 vaccine breakthrough infections in health care workers. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.08.20.21262158v1.full.pdf+html</u>

A Foundation of Swiss Universities

²³ One number could help reveal how infectious a COVID-19 patient is. Should test results include it?. Science. <u>https://www.sciencemag.org/news/2020/09/one-number-could-help-reveal-how-infectious-covid-19-patient-should-test-results</u>


²⁴ Effect of Vaccination on Household Transmission of SARS-CoV-2 in England. New England Journal of Medicine. <u>https://www.nejm.org/doi/10.1056/NEJMc2107717</u>

²⁵ Impact of BNT162b2 vaccination and isolation on SARS-CoV-2 transmission in Israeli households: an observational study. medRxiv. <u>https://www.medrxiv.org/content/10.1101/2021.07.12.21260377v1.full-text</u>

²⁶ Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts. *medRxiv*. https://www.medrxiv.org/content/10.1101/2021.07.13.21260393v1.full-text

²⁷ Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent – Wisconsin, July 2021. medRxiv. <u>https://www.medrxiv.org/content/10.1101/2021.07.31.21261387v3.full</u>

²⁸ Virological and serological kinetics of SARS-CoV-2 Delta variants vaccine-breakthrough infections: a multi-center cohort study. *medRxiv*. <u>https://www.medrxiv.org/content/10.1101/2021.07.28.21261295v1</u>

SWISS SCHOOL 0F30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

Synoptic table about SARS-CoV-2 vaccines accepted in the WHO's Emergency Use Listing (as of 27 August, 2021)

	BNT162b2/ COMIRNATY (Pfizer-BioNTech, USA)	Spikevax/ Moderna COVID-19 Vaccine/ mRNA-1273 (Moderna, USA)	Vaxzevria/ ChAdOx1 nCoV-19/ AZD1222/ Covishield (AstraZeneca/Oxfor d, UK, India)	Janssen COVID-19 vaccine/Johnson & Johnson (Janssen, USA)	Sinopharm/BBIBP- CorV, China	Sinovac CoronaVac, China
		GENER	AL VACCINE INFORM	ATION		
Platform	mRNA-based vaccine	mRNA-based vaccine	Non-replicating vector-based vaccine	Non-replicating vector-based vaccine	Inactivated virus (Vero cell)	Inactivated virus (Vero cell)
Dose and frequency	2 doses, 21 days apart	2 doses, 28 days apart	2 doses, 4-12 weeks apart	1 dose, once	2 doses, 21 days apart	2 doses, 14 days apart
Target population	12 years old and over	12 years old and over	18 years old and over	18 years old and over	18 years old and over	18 years old and over
Storage conditions	2°C to 8 °C (for 1 month)	2°C to 8 °C (for 1 month)	2°C until 8 °C	2°C to 8 °C (for 3 months)	2°C until 8 °C	2°C until 8 °C
Approving authorities	FDA, EMA, WHO EUL, and list of countries (including Switzerland)	FDA, EMA, WHO EUL, and list of countries (including Switzerland)	FDA (ongoing), EMA, WHO EUL, and list of countries (Switzerland is ongoing too)	FDA, EMA, WHO EUL, and list of countries (including Switzerland)	WHO EUL, and list of 55 countries (e.g., Argentina, Bahrain, Brazil, China, Indonesia, United Arab Emirates, Zimbabwe)	WHO EUL, and list of 33 countries (e.g., Albania, Chile, Egypt, Hong Kong, Malaysia, Tunisia, Turkey, Ukraine)

A Foundation of Swiss Universities

NUSS SCHOOL OF 30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

	PHASE III TRIALS RESULTS								
Number of participants (vaccine/ placebo)	43,448 (21,720/ 21,728) ¹	30,420 (15,210/15,210) ²	17,178 (8597/8581) ³	39,321 (19,630/19,691) ⁴	26,917 (13,459/13458); or 26,914 (13,465/13,458)⁵	9,823 (4,953/4,870) ⁶			
Total COVID-19 cases (vaccine/ control)	170(8/162) ¹	196 (11/185) ²	332 (84/248) ³	464 (116/348) ⁴	121(26/95) or 116(21/95)⁵	253(85/168) ⁶			
Efficacy estimates in Phase III trials ⁱ	Starting from 7 days after 2nd dose: 95.0% (95% CI, 90.3 to 97.6) in population without prior SARS- CoV-2 infection. Efficacy of 94.6% (95% CI, 89.9 to 97.3) in population with or without prior infection. 100% among adolescents (12-15 years old). ¹	After a median follow-up of less than 63 days: Efficacy of 94.1% (95% CI, 89.3 to 96.8; P<0.001). 100% among adolescents (12 to <18 years old). ²	14 days and more, participants with two standard doses: efficacy was 63-1% (95% CI 51.8 to 71.7) while those with first low dose and standard 2nd dose the efficacy was 80.7% (95% CI 62.1 to 90.2). Pooled analysis efficacy was 66.7% (95% CI 57.4 to 74.0). For any nucleic acid amplification test-	VE against moderate-severe- critical Covid-19 was 66.9% (95% CI 59.0 to 73.4) after 14 days post vaccine administration, and 66.1% (95% CI 55.0 to 89.1) after 28 days. VE against severe-critical COVID-19 cases was 76.7% (95% CI 54.6 to 89.1) after 14 days and 85.4%	After 14 days, efficacy against symptomatic cases was 72.8% (95% CI 58.1 to 82.4; in WIV04 vaccine) or 78.1% (95% CI 64.8 to 86.3; in HBO2 vaccine). ⁵	After 14 days, efficacy against symptomatic cases was 50.7% (95% Cl 35.9 to 0-62.0). ⁶			

ⁱ Phase III trials were conducted between 27 July and 14 November 2020 for BNT162b2/ COMIRNATY, 27 July and 23 October 2020 for Spikevax/ Moderna, 23 April and 6 December 2020 for Vaxzevria/ ChAdOx1 nCoV-19/ AZD1222/ Covishield, 21 September 2020 and 22 January 2021 for Janssen Covid-19 vaccine/ Johnson & Johnson, 16 July and 20 December 2020 for Sinopharm/ BBIB-CorV, and 21 July and 16 December 2020 for the Sinovac/ CoronaVac vaccine. All trials were conducted prior to the transmission of the more contagious variant strains, particularly the delta variant (B.1.617.2). Studies are currently ongoing to determine the effectiveness of the vaccines against the delta variant. This will be covered in the next synoptic table report.

A Foundation of Swiss Universities

SWISS SCHOOL 0730.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

			positive swab: efficacy was 54.1% (95% CI 44.7 to 61.9) ³ .	(95% CI 54.2 to 96.9) after 28 days. ⁴		
			EFFICACY			
Efficacy of single doses	52% (95% CI, 29.5 to 68.4; starting at 12 days) or 82.2% (75.1 to 87.3; starting at ≥14 days) ⁷ . Another phase III trial: 91% (95% CI, 85- 94) ⁸ . ⁱⁱ	95.2% (95% CI, 91.2.8 to 97.4; starting at >14 days) ² .	72.8% (starting at 22 days up to 60 days) ³ . Another phase III trial: 88% (95% CI, 75- 94) ⁸ . ⁱⁱ	Single dose vaccine	Unknown	35.1% (95% CI, -6.6 to -60.5) [conducted in a setting with high P.1 transmission] ⁹ .
Efficacy against variants	Two doses of the vaccine effectively neutralize the B.1.1.7 variant and the D614G substitution. Neutralization of the B.1.351 was diminished by a factor of 5. Despite this, the BNT162b2 mRNA vaccine	NAbs remained high and consistent with titres of the wildtype for the B.1.1.7 variant. For the B.1.351 variant NAbs were 6-fold lower. The NAbs against the B.1.351 variant were still found to be protective ¹¹ .	Two doses of the vaccine had no efficacy against the B.1.351 (VE = 21.9%; 95% CI, - 49.9 to 59.8) ¹² . 70.4% (95% CI, 43.6-84.5) against symptomatic infection with alpha variant (B.1.1.7);	Efficacy against moderate-severe- critical Covid-19 due to the 20H/501Y.V2 variant was 52.0% (>14 days) and 64.0% (>28 days). Efficacy against severe-critical COVID-19 was 73.1% (>14 days)	Sinopharm has a reduced neutralizing capacity to B.1.617.2 and B.1.351. However, there were no differences in the NAbs titres against B.1.617.2 and B.1.351. in vaccinated individuals vs. those naturally infected,	49.6% against P.1 (>14 days after 1st dose) ⁹ .

ⁱⁱ Conducted between 8 December 2020 and 8 February 2021. Study sample = ≤ 1 million participants.

A Foundation of Swiss Universities

SWISS SCHOOL OF30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

	provides some protection against B.1.351 ¹⁰ .		28.9% (95% CI, - 77.1 to 71.4) against asymptomatic infection with B.1.1.7 ¹³ .	and 81.7% (>28 days) ⁴ . 1.6-fold reduction in neutralization sensitivity for B.1.167, 3.6-fold for B.1.351, and 3.4 for P.1 ¹⁴ .	suggesting the vaccines have a similar level of protection against infection as natural infections ¹⁵ .	
			EFFECTIVENESS			
Effectiveness of single dose	Individuals \geq 70:Symptomaticdisease: 58%16.Hospitalization riskreduced by 35-45%16.Risk of deathreduced by 54%16.General population:Against infection:70%17.	Individuals ≥ 70:Symptomaticdisease: 64% (95%Cl, 46-78; >2 weeksafter dose)18.iiiGeneral population:Symptomaticdisease: 60% (95%Cl, 57-64; >2 weeksafter dose)18.ivNo further data hasbeen published onthe mRNA-1273vaccine19.	Individuals ≥ 70: Symptomatic disease: 58%16.Hospitalization risk reduced by 35- $45\%16$.General population: Asymptomatic or symptomatic disease: 64%; Symptomatic disease: 67%20.	50.6% (95% Cl, 14.0-74.0) in preventing SARS- CoV-2 infection (<2 weeks after dose); 76.7% (95% Cl, 30.3-95.3) in preventing SARS- CoV-2 infection (>2 weeks after dose) ²¹ .	Partial protection ²² .v	15.5% for preventing COVID-19; 37.4% for preventing hospitalization; 44.7% for preventing admission to the ICU; and 45.7% for preventing of COVID-19 related death ²³ .

ⁱⁱⁱ mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

^{iv} mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

^v Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results.

A Foundation of Swiss Universities

SWISS SCHOOL 0F30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

Effectiveness two doses	<u>General population:</u> Against infection: 85% ¹⁷ . 94.6% ²⁴ .	<u>General population:</u> 100% ²⁴ . Symptomatic disease: 91% (95% CI, 89-93; >2 weeks after dose) ¹⁸ . ^{vi} No further data has been published on the mRNA-1273 vaccine ¹⁹ .	<u>General population:</u> Asymptomatic or symptomatic disease: 85%; Symptomatic disease: 90% ²⁰ .	Not Applicable (one dose schedule)	Partial protection ²² . ^{vii}	65.9% for preventing COVID-19; 87.5% for preventing hospitalization; 90.3% for preventing ICU admission; and 86.3% for preventing COVID-19 related death ²³ .
Effectiveness against variants	$\frac{Single \ dose:}{Delta: \ 30.7\% \ (95\% \\ Cl, \ 25.2 \ to \ 35.7)^{25}}$ Alpha: 48.7% (95% Cl, 45.5 \ to \ 51.7)^{25} $\frac{Two \ doses:}{Delta \ (B.1.617):} \\ 88.0\% \ (95\% \ Cl, \ 85.3 \\ to \ 90.1)^{25} \\$ Alpha (B.1.1.7): 93.7 (95% Cl, 91.6 to 95.3)^{25} \\	Single dose: Alpha: 88.1% (95% Cl, 83.7 to 91.5) ²⁷ Beta: 61.3% (95% Cl, 56.5 to 65.5) ²⁷ <u>Two doses:</u> Alpha: 100% (95% Cl, 91.8 to 100) ²⁷ Beta: 96.4% (95% Cl, 91.9 to 98.7) ²⁷	Single dose: Delta: $30.7\% (95\%)$ Cl 25.2 to $35.7)^{25}$ Alpha: $48.7\% (95\%)$ Cl 45.5 to $51.7)^{25}$ Two doses: Delta: $67.0\% (95\%)$ Cl, 61.3 to $71.8)^{25}$ Alpha: $74.5 (95\%)$ Cl, 68.4 to $79.4)^{25}$ Odds ratio of 5.45 (95\%) Cl, $1.39-21.4$) to become infected	No published data.	No published data.	Demonstrated 42% vaccine effectiveness in a setting with high P.1 transmission, in individuals aged 70 and above ²⁹ . <u>Two doses:</u> Equally effective (~76%) in neutralizing D614G, B.1.1.7 and B.1.429 as the wild type strain. Neutralization was decreased by factor 4.03 for

^{vi} mRNA-aggregated data (results do not disaggregate between BNT162b2 and mRNA-1273).

^{vii} Study did not report numerical data on vaccine effectiveness. Further studies are required to validate results.

A Foundation of Swiss Universities

swiss school of 30.08.2021 - Sabina Rodriguez Velásquez, Gabriela public health

	Gamma (P.1): Neutralization activity reduced by 3.3 fold ²⁶ .		with B.1.167 compared to non- B.1.167 ²⁸ .			B.1.526, factor 3.92 for P.1, and factor 5.27 for B.1.351 ³⁰ . <u>Delta variant:</u> Single dose: 13.8% (95% CI, -60.2-54.8) Two doses: 59% (95% CI, 16-81.6) against SARS-CoV- 2 infection and 70.2% (95% CI, 29.6-89.3) against moderate COVID-19 infection ³¹ .
		SAFET	Y AND ADVERSE EVE	NTS		
Safety (adverse events)	Common side effects: pain at the injection site, fatigue, headache, myalgia, chills and fever. ³² Optimal safety for asthma patients ³³ . Rare adverse events: axillary lymphadenopathy, paroxysmal	Common side effects: pain at injection site, headache, fatigue, myalgia, arthralgia ² , Covid arm (cutaneous hypersensitivity) ⁴⁵ . Rare adverse events: Myocarditis ^{34,35} , orofacial swelling &	Common side effects: fatigue, myalgia, arthralgia, headache ⁴⁹ , lethargy, fever, & nausea ⁵⁰ . Rare adverse events: transverse myelitis, high fever ^{49,51} , cutaneous hypersensitivity ⁵¹ ,	Common adverse events: headache, fever, chills, fatigue, myalgia, and nausea ⁵⁸ . Rare adverse events: thrombosis, thrombocytopenia, cerebral venous sinus thrombosis ⁵⁹ , increased risk of developing Guillain-	Common side effects: pain at the injection site, dizziness, headache, fatigue, nausea, vomiting, & allergic dermatitis ⁵⁰ . Common adverse events: pain at the injection site and fever ⁵⁰ .	Common side effects: pain at injection site, headache, fatigue, tremors, & flushing ⁶ . Rare adverse events: myalgia, fever ⁶ , pityriasis rosea (lesions improved completely after ~8 weeks) ³⁸ .

A Foundation of Swiss Universities

swiss school of 30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

ventricular arrhythmia, leg paresthesia ¹ . Myocarditis ^{34,35} , anaphylaxis and swelling of the lips, face, and tongue related to anaphylaxis ³⁶ (11 anaphylaxis cases per million doses administered) ³⁷ , pityriasis rosea (lesions improved completely after ~8 weeks) ³⁸ , lymphocytic vasculitis ³⁹ , reactivation of varicella-zoter virus after second dose (typically occur in individuals with pre- existing conditions) ⁴⁰ , Kikuchi-Fujimoto disease ⁴¹ . Potential association: cerebral venous sinus thrombosis and intracranial haemorrhage	anaphylaxis ³⁶ . Potential risk factor for Bell's palsy (most improve upon follow- up) ⁴⁶ , herpes zoster reactivation (very rare) ⁴⁷ One case developed IgA Nephropathy after receiving the second dose of mRNA-1273 (causal link not yet proven) ⁴⁸ .	vasculitis ⁵² , cerebral venous sinus thrombosis ⁵³ (higher risk for women) ⁵⁴ , thromboembolism ⁵⁵ , vaccine induced immune thrombotic thrombocytopenia ⁵⁶ , small vessel vasculitis ⁵² . Vaccination in individuals with adrenal insufficiency can lead to adrenal crises ⁵⁷ .	Barré syndrome post vaccination ⁶⁰ . 97% of reported reactions after vaccine administration were non-serious ⁵⁸ .	Unsolicited adverse reactions were similar among the vaccine groups and control group within 7 days ⁵ .	Serious adverse events were similar in number in the vaccine and placebo groups (judged unrelated to the vaccine) ⁶ .
---	--	---	---	---	--

A Foundation of Swiss Universities

swiss school of 30.08.2021 - Sabina Rodriguez Velásquez, Gabriela public health

	(causal link not yet proven) ⁴² , aseptic meningitis (causal link not yet proven) ⁴³ . Serious adverse events were observed in a similar proportion of vaccine (0.6%) and placebo (0.5%) recipients, which also occur at a similar frequency within the general population ^{32,44} .					
	I	TRANSMISSI	ON, PREVENTION, PR	OTECTION		
Severe disease/death prevention	100% (after 7 days)	100% (≥14 days)	100% (after 21 days)	76.7% (≥14 days) or 85.4% (≥28 days)	100% (>14 days)	100% (>14 days) ⁶
Transmission prevention	Prior Delta Variant: Vaccine effectiveness against infectiousness given infections 41.3% ⁶¹ Vaccine effectiveness against transmission 88.5% ⁶¹	Limited data	48% (limited data) May not be able to block the transmission of the alpha variant as efficiently as the wild type ¹³ .	Limited data	Unknown	Unknown

A Foundation of Swiss Universities

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

14/27

SWISS SCHOOL 0130.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

	During Delta Variant: Similar Ct values (<25) were found in both vaccinated and unvaccinated groups ⁶²					
Duration of protection	Limited data ⁶³ Median time between second dose and infection: 146 days (IQR, 121- 167) ⁶⁴	Limited data ⁶³ <u>Preliminary phase I</u> <u>results:</u> Antibody activity remained high in all age groups at day 209 (approximately 6 months) GMT were lower in ≥56 years old ⁶⁵	Antibody Response: After single dose, antibody response declined within one year, but remained above baseline levels. Antibody levels after day 180 : 0.54 GMR (CI, 0.47- 0.61). Antibody levels after day 320 : 0.30 GMR (CI, 0.24- 0.39) ⁶⁶ Cellular Immune Response: Day 182 after first dose: median of 237 SFUx10 ⁶ PBMC (IQR, 109-520) ⁶⁶ 6 months after second dose: (median 1240, IQR	Limited data ⁶³ <u>Humoral & Cellular</u> <u>Immune Response:</u> Antibody responses were detected in all vaccine recipients on day 239 (stable response for at least 8 months) ⁶⁷	Limited data ⁶³	A phase I/II clinical trial found that NAbs titres dropped below the seropositive cut- off of 8, 6 months after the administration of the first dose ⁶⁸ .

A Foundation of Swiss Universities

swiss school of 30.08.2021 - Sabina Rodriguez Velásquez, Gabriela public health

			432-2002) in groups with 15-25 week interval between doses ⁶⁶			
Asymptomatic prevention in/outside clinical trials	90% (starting at 14 days) regardless of symptom status ⁶⁹ .	90% (starting at 14 days)	Statistically non- significant reduction of 22.2% (95% CI - 9.9 to 45.0) for asymptomatic cases	At day 71, vaccine efficacy against asymptomatic infections was 65.5% (95% CI 39.9 to 81.1) ⁴ .	Efficacy against symptomatic and asymptomatic cases was 64% (95% CI 48.8 to 74.7; in WIV04 vaccine) or 73.5% (95% CI 60.6 to 82.2; in HBO2 vaccine) ⁵ .	Unknown
		(CHILDREN VACCINAT	ION		
Efficacy	Adolescents (12-15): After one dose had efficacy of 75% (Cl, 7.6-95.5) After second dose efficacy of 100% (Cl, 78.1-100) ⁷⁰ . <u>Children (6months- 11):</u> Ongoing trials ⁷¹	Adolescents (12-17): After one dose had efficacy of 92.7% (CI, 67.8-99.2) After second dose efficacy of 93.3% (CI, 47.9-99.9) ⁷² . <u>Children (6month- 11):</u> Ongoing trials ⁷³	No available data Paused ongoing trials in children aged 6-17 due to concerns over rare blood clots reported in adult population ⁷⁴ .	No available data Announced at begging of April ongoing study in adolescents but paused to investigate blood clots in adult population ⁷⁴ .	<u>Children (3-17):</u> Ongoing clinical trial ⁷⁵ . Countries such as China and UAE have approved its use in children ⁷⁶ .	<u>Children (3-17):</u> Unknown. Clinical trial only looked at safety, tolerability and immunogenicity ⁷⁷ .
Immunogenicity	<u>Adolescents (12-15)</u> <u>serum-neutralizing</u> <u>titer:</u> 1 month after 2nd dose had 1283.0	Adolescents (12-17): Neutralizing antibody titer after 2 nd dose was 1401.7 GMN ₅₀	No available data	No available data	Ongoing clinical trial ⁷⁵ .	<u>Children (3-17):</u> Neutralizing antibody response after 2 nd dose (100%)

A Foundation of Swiss Universities

SWISS SCHOOL 0F30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

	GMN₅0 (CI, 1095.5- 1402.5) ⁷⁰ . <u>Adolescents/young</u> <u>adult (16-25) serum-</u> <u>neutralizing titer:</u> 1 month after 2nd dose had 705.1 GMN₅0 (CI, 621.4- 800.2) ⁷⁰ . <u>Children (6months-</u> <u>11):</u> Ongoing trials ⁷¹	(Cl, 1276.3-1539.4) Serological response was 98.8% (Cl, 97.0- 99.7) <u>Children (6month- 11):</u> Ongoing trials ⁷³				with GMT ranging from 45.9-212.6 ⁷⁷
Safety and Adverse events	Adolescents (12-15): Local and systemic events were generally mild to moderate Severe injection-site pain (1.5%) Fever (20%) High Fever (0.1%) Adverse events (6%) Severe adverse events (0.6%) ⁷⁰ . <u>Adolescent/young</u> <u>adults (16-25):</u> Local and systemic events were generally mild to moderate	Adolescents (12-17): Solicited local reactions after 2nd dose (93.4%) Most common solicited adverse reactions were Injection-site pain (92.7%) Headache (70.2%) Fatigue (67.8%) Grade 3 adverse events (6.8%) Few reported cases of acute myocarditis and pericarditis (mainly in males) ⁷⁸	No available data	No available data	Ongoing clinical trial ⁷⁵	<u>Children (3-17):</u> Adverse reactions in 12–17 year group (35%), 3-5 year group (26%), and 6- 11 year group (18%) Reported at least one adverse event (27%) Most reported events were mild and moderate and only (<1%) grade 3 events Injection-site pain (13%) Fever (25%) ⁷⁷

A Foundation of Swiss Universities

SWISS SCHOOL OF 30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

	Severe injection-site pain (3.4%) Fever (17%) Adverse events (6%) Severe adverse events (1.7%) ⁷⁰ . Few reported cases of acute myocarditis and pericarditis (mainly in males) ⁷⁸ <u>Children (6months- 11):</u> Ongoing trials ⁷¹	<u>Children (6month- 11):</u> Ongoing trials ⁷³				
		HETER	OLOGOUS VACCINAT	ΓΙΟΝ		
Heterologous vaccines schedule	BNT162b2/ChAdOx 1 Administration of ChAdOx1 as second/booster dose	ChAdOx1/mRNA- 1273 Administration of mRNA-1273 as second/booster dose	ChAdOx1/BNT162b 2 Administration of BNT162b2 as second/booster dose	Not Applicable (one dose schedule)	BBIBP/BNT162b2	Press releases have confirmed that Thailand will use the AstraZeneca vaccine as the second dose for individuals whose first dose was Sinovac ^{viii}

viii Malaysia to stop using Sinovac vaccine after supply ends - minister. *Reuters* [press release]. https://www.reuters.com/world/asia-pacific/malaysia-stopusing-sinovac-vaccine-after-supply-ends-minister-2021-07-15/

A Foundation of Swiss Universities

Heterologous vaccines immunogenicity	<u>GMCs of SARS-</u> <u>CoV-2 anti-spike IgG</u> <u>at 28 days post</u> <u>booster:</u> Heterologous (7133 ELU/mL, CI 6415- 7932) vs. Homologous (14,080 ELU/mL, CI 12491- 15871) ⁷⁹ . <u>SFC frequency</u> (<u>TOcell ELISpot)</u> : Heterologous (99 SFC/10 ⁶ PBMCs) vs. Homologous (80 SFC/10 ⁶ PBMCs) ⁷⁹ .	*Spike-specific IgG antibodies: Heterologous (3602 BAU/mL) vs. Homologous (4189 BAU/mL)48*Neutralizing antibodies: Heterlogous (100%) vs. Homologous (100%) ⁸⁰ .*Results based on immunosuppressed population	RBD antibody titres: Heterologous (7756.68 BAU/mL, CI 7371.53-8161.96) vs. Homologous (99.84 BAU/mL, CI 76.93- 129.59) at day 14 ⁸¹ . IgG antibody titres: Heterologous (3684 BAU/mL) vs. Homologous (101.2 BAU/mL) at day 14 ⁸¹ . Neutralizing antibodies: Heterologous (100%) at day 14 vs. Homologous (30%) at day 14 ⁸¹ .	Not Applicable (one dose schedule)	Unknown (on-going clinical trial) ⁴⁹	Unknown
Heterologous vaccines reactogenicity	Observed increase in systemic reactogenicity after boost in heterologous schedules in comparison with homologous schedules ⁷⁹ <u>Adverse events in</u> <u>heterologous</u> :	*Adverse events in heterologous and homologous vaccination groups were very similar ⁸⁰ . *Majority of adverse events self-reported were Pain at injection site, Swelling at injection site, Fever,	Adverse events in heterologous: Headache (44%), Myalgia (43%), Malaise (42%), Fever (2%), Injection site pain (88%), Induration (35%), Erythema (31%) ⁸¹ .	Not Applicable (one dose schedule)	Unknown (on-going clinical trial) ⁸²	Unknown

A Foundation of Swiss Universities

Swiss School of Public Health (SSPH+) | Hirschengraben 82 | 8001 Zurich | Phone +41 (0)44 634 47 02 | info@ssphplus.ch | www.ssphplus.ch

19/27

	Adverse events (90) Grade 1 (54.4%) Grade 2 (37.8%) Grade 3 (7.8%) Grade 4 (0%) Arthralgia, Migraine, Back Pain ⁷⁹ . <u>Adverse events in</u> <u>homologous:</u> Adverse events (81) Grade 1 (59.3%) Grade 2 (39.5%) Grade 3 (1.2%) Grade 4 (0%) ⁷⁹ .	Headaches, Fatigue, Chills, GI effects, Myalgia, Arthralgia ⁸⁰ . *Results based on immunosuppressed population	<u>Severity of adverse</u> <u>events in</u> <u>heterologous:</u> Mild (68%) , Moderate (30%) , Severe (2%) ⁸¹ .			
			OTHER			
Third dose/prime boosters	Booster trial of third dose of current BNT162b2 vaccine are ongoing. Initial data demonstrates that given 6 months after second dose has consistent tolerability and high immunogenicity against wild type and Beta variant ⁸³ .	Phase II booster trial of three booster doses are ongoing ⁸³ . Preliminary results of booster doses of mRNA-1273 vaccine show robust antibody response against Delta variant and similar safety and tolerability compared to second dose ⁸⁴ .	Preliminary results on tolerability and immunogenicity of third dose of ChAdOx1 vaccines showed strong boost to the immune response ⁸⁴ . Preprint reported that antibody levels 28 days after third dose were significantly higher than second dose antibodies after 28	Janssen/ Johnson & Johnson are testing a 2-dose version of their vaccine that provides stronger immunogenicity and duration of protection ⁸⁵ .	No further available data Study using animal model suggests that heterologous prime- boost with two doses of inactivated vaccine followed by either recombinant RBD, adenovirus- vectored or mRNA vaccine improves humoral immune response ⁸⁶ .	A third (booster) dose was administered to healthy adults ≥60 years, 8 months after the primary vaccination. The third dose significantly increased NAbs, which had previously dropped below the seropositive cut-off. The most common side effect was pain at the injection site.

A Foundation of Swiss Universities

swiss school 0f30.08.2021 - Sabina Rodriguez Velásquez, Gabriela public health

	days and that third dose provided higher antibody titters against Alpha, Beta, and Delta variants ⁶⁶ .		All other adverse events were considered unrelated to the vaccination. The third shot is considered to be safe ⁶⁸ .
			Indonesia and Thailand are considering a third booster shot to HCW that were vaccinated with CoronaVac. Turkey and the United Arab Emirates have already began to give booster shots to those vaccinated with Sinovac/ CoronaVac. ^{ix}
			model suggests that heterologous prime- boost with two doses of inactivated vaccine followed by either recombinant

^{ix} Indonesia, Thailand consider booster shots amid doubts over Sinovac vaccine. *Reuters* [press release]. https://www.reuters.com/world/china/indonesia-thailand-consider-booster-shots-amid-doubts-over-sinovac-vaccine-2021-07-08/

A Foundation of Swiss Universities

SWISS SCHOOL OF30.08.2021 - Sabina Rodriguez Velásquez, Gabriela PUBLIC HEALTH

						RBD, adenovirus- vectored or mRNA vaccine improves humoral immune response ⁸⁶ .
Comments /ongoing studies	Specific populations were excluded (HIV and immunocompromise d patients, pregnant women, and younger adults) were excluded from the current analysis. No data related to asymptomatic protection or transmission. Risk of myocarditis and pericarditis is added to the vaccine information sheet	Evaluation of the incidence of asymptomatic or subclinical infection and viral shedding would have been interesting. Calculation of efficacy were not based on the total number of confirmed Covid-19 cases. Risk of myocarditis and pericarditis is added to the vaccine information sheet.	Blood clots, thrombotic events and thrombocytopenia were reported in real-world settings, although quite rare.	Blood clots, thrombotic events and thrombocytopenia were reported in real-world settings, although quite rare.	Only 2 severe cases occurred in the control group and none in the vaccine group (very few cases to get a reliable estimate).	Death reports on fully vaccinated doctors (10 cases during June 2021 in Indonesia). It may be related to new variants. [media report] ^x

* Indonesian Covid deaths add to questions over Sinovac vaccine. *The Guardian* [press release]. <u>https://www.theguardian.com/world/2021/jun/28/indonesian-covid-deaths-add-to-questions-over-sinovac-vaccine</u>

Wniversität Basel	<i>u°</i> ¥	R B UNIVERSITÉ	Unil		unine	0	Universität Zürich**	B	SUPSI	zh
----------------------	-------------	----------------	------	--	-------	---	-------------------------	---	-------	----

A Foundation of Swiss Universities

References

- 1. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine*. 2020;383(27):2603-2615.
- 2. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *New England Journal of Medicine.* 2020;384(5):403-416.
- Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. *The Lancet.* 2021;397(10277):881-891.
- 4. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. *N Engl J Med.* 2021;384(23):2187-2201.
- 5. Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. *JAMA*. 2021;326(1):35-45.
- 6. Palacios R, Batista AP, Santos Nascimento Albuquerque C, et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN - Preprint. 2021.
- Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel — 33 U.S. Sites, January–March 2021. MMWR Morbidity and mortality weekly report. 2021;70(20):753– 758.
- 8. Vasileiou E, Simpson CR, Shi T, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. *The Lancet.* 2021;397(10285):1646-1657.
- 9. Hitchings MDT, Ranzani OT, Scaramuzzini Torres MS, et al. Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: A test-negative case-control study. *medRxiv*. 2021:2021.2004.2007.21255081.
- 10. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. *Nature Communications*. 2021;12(1).
- 11. Moderna. Moderna COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa. 2021.
- 12. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. *New England Journal of Medicine*. 2021;384(20):1885-1898.
- 13. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. *Lancet.* 2021;397(10282):1351-1362.
- 14. Jongeneelen M, Kaszas K, Veldman D, et al. Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. *bioRxiv*. 2021:2021.2007.2001.450707.
- 15. Jeewandara C, Aberathna IS, Pushpakumara PD, et al. Antibody and T cell responses to Sinopharm/BBIBP-CorV in naïve and previously infected individuals in Sri Lanka. *medRxiv*. 2021:2021.2007.2015.21260621.
- 16. Public Health England. Public Health England vaccine effectiveness report. 2021.
- 17. Hall VJ, Foulkes S, Saei A, et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). SSRN - Preprint. 2021.
- 18. Chung H, He S, Nasreen S, et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. *BMJ.* 2021;374:n1943.
- 19. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. *Nature Reviews Immunology.* 2021.

- 20. Lumley SF, Rodger G, Constantinides B, et al. An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.* 2021.
- 21. Corchado-Garcia J, Puyraimond-Zemmour D, Hughes T, et al. Real-World Effectiveness of Ad26.COV2.S Adenoviral Vector Vaccine for COVID-19. *SSRN Preprint.* 2021.
- 22. Jahromi M, Al Sheikh MH. Partial protection of Sinopharm vaccine against SARS COV2 during recent outbreak in Bahrain. *Microb Pathog.* 2021;158:105086.
- 23. Jara A, Undurraga EA, González C, et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. *New England Journal of Medicine*. 2021.
- 24. Paris C, Perrin S, Hamonic S, et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. *Clinical Microbiology and Infection.* 2021.
- 25. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. *New England Journal of Medicine.* 2021;385(7):585-594.
- 26. Gidari A, Sabbatini S, Bastianelli S, et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. *Journal of Infection.* 2021.
- 27. Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. *Nature Medicine.* 2021.
- 28. Mlcochova P, Kemp SA, Shanker Dhar M, et al. SARS-CoV-2 B.1.617.2 Delta variant replication, sensitivity to neutralising antibodies and vaccine breakthrough. *bioRxiv*. 2021:2021.2005.2008.443253.
- 29. Ranzani O, Hitchings M, Neto M, et al. *Effectiveness of the CoronaVac vaccine in the elderly* population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study. 2021.
- 30. Chen Y, Shen H, Huang R, Tong X, Wu C. Serum neutralising activity against SARS-CoV-2 variants elicited by CoronaVac. *The Lancet Infectious Diseases*. 2021;21(8):1071-1072.
- 31. Li X-n, Huang Y, Wang W, et al. Efficacy of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. *Emerging Microbes & Infections.* 2021:1-32.
- 32. Oliver SE, Gargano JW, Marin M, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020. *MMWR Morbidity and mortality weekly report.* 2020;69(50):1922-1924.
- 33. Caminati M, Guarnieri G, Batani V, et al. Covid-19 vaccination in patients with severe asthma on biologic treatment: Safety, tolerability, and impact on disease control. *Vaccines.* 2021;9(8).
- 34. Kim HW, Jenista ER, Wendell DC, et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. *JAMA Cardiology.* 2021.
- 35. Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. *Circulation.* 2021;144(6):471-484.
- 36. Cirillo N. Reported orofacial adverse effects of COVID-19 vaccines: The knowns and the unknowns. *Journal of Oral Pathology & Medicine.* 2021;50(4):424-427.
- 37. Shimabukuro T. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine - United States, December 14-23, 2020. *Am J Transplant.* 2021;21(3):1332-1337.
- 38. Temiz SA, Abdelmaksoud A, Dursun R, Durmaz K, Sadoughifar R, Hasan A. Pityriasis rosea following SARS-CoV-2 vaccination: A case series. *Journal of Cosmetic Dermatology*. 2021.
- 39. Vassallo C, Boveri E, Brazzelli V, et al. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine. *Dermatol Ther.* 2021:e15076.
- 40. Santovito LS, Pinna G. A case of reactivation of varicella-zoster virus after BNT162b2 vaccine second dose? *Inflamm Res.* 2021:1-3.
- 41. Soub HA, Ibrahim W, Maslamani MA, A. Ali G, Ummer W, Abu-Dayeh A. Kikuchi-Fujimoto disease following SARS CoV2 vaccination: Case report. *IDCases*. 2021;25.

- 42. Shimazawa R, Ikeda M. Potential adverse events in Japanese women who received tozinameran (BNT162b2, Pfizer-BioNTech). *Journal of Pharmaceutical Policy and Practice*. 2021;14(1):46.
- 43. Saito K, Shimizu T, Suzuki-Inoue K, Ishida T, Wada Y. Aseptic meningitis after vaccination of the BNT162b2 mRNA COVID-19 vaccine. *Neurol Sci.* 2021:1-3.
- 44. Chagla Z. The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose. *Annals of Internal Medicine.* 2021;174(2):JC15.
- 45. Wei N, Fishman M, Wattenberg D, Gordon M, Lebwohl M. "COVID arm": A reaction to the Moderna vaccine. *JAAD Case Rep.* 2021;10:92-95.
- 46. Iftikhar H, Noor SMU, Masood M, Bashir K. Bell's Palsy After 24 Hours of mRNA-1273 SARS-CoV-2 Vaccine. *Cureus.* 2021;13(6):e15935-e15935.
- 47. Channa L, Torre K, Rothe M. Herpes zoster reactivation after mRNA-1273 (Moderna) SARS-CoV-2 vaccination. JAAD Case Rep. 2021;15:60-61.
- 48. Abramson M, Mon-Wei Yu S, Campbell KN, Chung M, Salem F. IgA Nephropathy After SARS-CoV-2 Vaccination. *Kidney Medicine*. 2021.
- 49. Voysey M, Costa Clemens SA, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *The Lancet.* 2021;397(10269):99-111.
- 50. Ghiasi N, Valizadeh R, Arabsorkhi M, et al. Efficacy and side effects of Sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19; a review and discussion. 2021.
- 51. Català A, Muñoz-Santos C, Galván-Casas C, et al. Cutaneous reactions after SARS-COV-2 vaccination: A cross-sectional Spanish nationwide study of 405 cases. *The British journal of dermatology*. 2021.
- 52. Guzmán-Pérez L, Puerta-Peña M, Falkenhain-López D, et al. Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2. *Journal of the European Academy of Dermatology and Venereology.* 2021.
- 53. Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and Intracranial Venous Sinus Thrombosis after "COVID-19 Vaccine AstraZeneca" Exposure. *Journal of Clinical Medicine*. 2021;10(8):1599.
- 54. Schulz JB, Berlit P, Diener HC, et al. COVID-19 vaccine-associated cerebral venous thrombosis in Germany. *Annals of neurology.* 2021.
- 55. Perera R, Fletcher J. Thromboembolism and the Oxford-AstraZeneca vaccine. *BMJ.* 2021;373:n1159.
- 56. Althaus K, Möller P, Uzun G, et al. Antibody-mediated procoagulant platelets in SARS-CoV-2vaccination associated immune thrombotic thrombocytopenia. *Haematologica*. 2021;106(8):2170-2179.
- 57. Maguire D, McLaren DS, Rasool I, Shah PM, Lynch J, Murray RD. ChAdOx1 SARS-CoV-2 vaccination: A putative precipitant of adrenal crises. *Clinical Endocrinology*. 2021.
- 58. Shay DK, Gee J, Su JR, et al. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine - United States, March–April 2021. *Morbidity and Mortality Weekly Report.* 2021;70(18):680–684.
- 59. MacNeil JR, Su JR, Broder KR, et al. Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome Among Vaccine Recipients - United States, April 2021. *MMWR Morbidity and mortality weekly report.* 2021;70(17):651-656.
- 60. U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: July 13, 2021. U.S Food & Drug Administration. Published 2021. Updated 13 July 2021. Accessed 18 August, 2021.
- 61. Prunas O, Warren JL, Crawford FW, et al. Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. *medRxiv*. 2021:2021.2007.2013.21260393.
- 62. Riemersma KK, Grogan BE, Kita-Yarbro A, et al. Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent Wisconsin, July 2021. *medRxiv*. 2021:2021.2007.2031.21261387.
- 63. Swiss National COVID-19 Task Force. *Protection Duration After Vaccination or Infection.* Swiss National COVID-19 Task Force; 10 August 2021 2021.

- 64. Israel A, Merzon E, Schäffer AA, et al. Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection in a large cohort. *medRxiv.* 2021:2021.2008.2003.21261496.
- 65. Doria-Rose N, Suthar MS, Makowski M, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. *New England Journal of Medicine.* 2021;384(23):2259-2261.
- 66. Flaxman A, Marchevsky N, Jenkin D, et al. Tolerability and Immunogenicity After a Late Second Dose or a Third Dose of ChAdOx1 nCoV-19 (AZD1222). SSRN Preprint. 2021.
- 67. Barouch DH, Stephenson KE, Sadoff J, et al. Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. *New England Journal of Medicine*. 2021.
- 68. Li M, Yang J, Wang L, et al. A booster dose is immunogenic and will be needed for older adults who have completed two doses vaccination with CoronaVac: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. *medRxiv*. 2021:2021.2008.2003.21261544.
- 69. Thompson MG, Burgess JL, Naleway AL, et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers Eight U.S. Locations, December 2020–March 2021. *MMWR Morbidity and mortality weekly report.* 2021;70(13):495-500.
- 70. Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. *New England Journal of Medicine*. 2021;385(3):239-250.
- 71. Study to Evaluate the Safety, Tolerability, and Immunogenicity of an RNA Vaccine Candidate Against COVID-19 in Healthy Children <12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04816643.
- 72. Ali K, Berman G, Zhou H, et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. *N Engl J Med.* 2021.
- 73. A Study to Evaluate Safety and Effectiveness of mRNA-1273 COVID-19 Vaccine in Healthy Children Between 6 Months of Age and Less Than 12 Years of Age. In: https://ClinicalTrials.gov/show/NCT04796896.
- 74. Ewen Callaway. COVID vaccines and kids: five questions as trials begin. <u>https://www.nature.com/articles/d41586-021-01061-4</u>. Published 2021. Accessed August 11, 2021, 2021.
- 75. Immuno-bridging Study of Inactivated SARS-CoV-2 Vaccine in Healthy Population Aged 3-17 vs Aged 18 Years Old and Above. In: <u>https://ClinicalTrials.gov/show/NCT04917523</u>.
- 76. Global Times. UAE approves use of Chinese Sinopharm COVID-19 vaccine for 3-17 age group. <u>https://www.globaltimes.cn/page/202108/1230498.shtml</u>. Published 2021. Accessed 16 August, 2021.
- 77. Han B, Song Y, Li C, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. *The Lancet Infectious Diseases.* 2021.
- 78. Das BB, Moskowitz WB, Taylor MB, Palmer A. Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? *Children.* 2021;8(7).
- 79. Liu X, Shaw RH, Stuart ASV, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. *Lancet.* 2021.
- 80. Schmidt T, Klemis V, Schub D, et al. Immunogenicity and reactogenicity of a heterologous COVID-19 prime-boost vaccination compared with homologous vaccine regimens. *medRxiv*. 2021:2021.2006.2013.21258859.
- 81. Borobia AM, Carcas AJ, Pérez-Olmeda M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, openlabel, randomised, controlled, phase 2 trial. *The Lancet*. 2021;398(10295):121-130.
- 82. Safety and Efficacy of COVID-19 Prime-boost Vaccine in Bahrain. In: https://ClinicalTrials.gov/show/NCT04993560.
- 83. Pfizer and BioNTech Provide Update on Booster Program in Light of the Delta-Variant [press release]. New York and Mainz, Germany, July 8 2021.

- 84. Moderna Announces Positive Initial Booster Data Against SARS-CoV-2 Variants of Concern [press release]. Cambridge, Massachusetts, May 5 2021.
 85. A Study of Ad26.COV2.S in Adults (COVID-19). In:
- 85. Ä Study of Ad26.COV2.S in Adults (COVID-19). In: https://clinicaltrials.gov/ct2/show/NCT04436276?id=NCT04436276&draw=1&rank=1.
- 86. Zhang J, He Q, An C, et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. *Emerging microbes & infections.* 2021:1-28.

